13 research outputs found
Role of sulforaphane in the anti-initiating mechanism of lung carcinogenesis in vivo by modulating the metabolic activation and detoxification of benzo(a)pyrene
Protective role of sulforaphane against oxidative stress mediated mitochondrial dysfunction induced by benzo(a)pyrene in female Swiss albino mice
In vitro and in vivo studies on antitumor effects of gossypol on human stomach adenocarcinoma (AGS) cell line and MNNG induced experimental gastric cancer
Inhibitory Effect of Sulforaphane against Benzo(a)pyrene Induced Lung Cancer by Modulation of Biochemical Signatures in Female Swiss Albino Mice
Apoptotic role of natural isothiocyanate from broccoli (<i>Brassica oleracea italica</i>) in experimental chemical lung carcinogenesis
ISG15 mediates the function of extracellular vesicles in promoting ovarian cancer progression and metastasis
Abstract The interferon stimulated gene 15 (ISG15), a ubiquitin like protein and its conjugates have been implicated in various human malignancies. However, its role in ovarian cancer progression and metastasis is largely unknown. In high grade serous ovarian cancer (HGSOC), ascites is the major contributor to peritoneal metastasis. In this study, we identified significantly elevated ISG15 protein expression in HGSOC patient ascites, ascites derived primary ovarian cancer cells (POCCs), POCC small extracellular vesicles (sEVs) as well as metastatic tissue. Our results demonstrates that ISG15 increases exocytosis in ascites‐derived POCCs by decreasing the endosome‐lysosomal fusion, indicating a key role in sEV secretion. Further, knockdown (KD) of ISG15 resulted in a significant decrease in vesicles secretion from HGSOC cells and in vivo mouse models, leading to reduced HGSOC cell migration and invasion. Furthermore, our pre‐clinical mouse model studies revealed the influence of vesicular ISG15 on disease progression and metastasis. In addition, knockdown of ISG15 or using the ISG15 inhibitor, DAP5, in combination therapy with carboplatin showed to improve the platinum sensitivity in‐vitro and reduce tumour burden in‐vivo. We also found that ISG15 expression within sEV represents a promising prognostic marker for HGSOC patients. Our findings suggest that ISG15 is a potential therapeutic target for inhibiting progression and metastasis in HGSOC and that vesicular ISG15 expression could be a promising biomarker in the clinical management of ovarian cancer. Significance: High‐grade serous ovarian cancer (HGSOC) has high morbidity and mortality rates, but its progression and metastasis are still poorly understood, and there is an urgent need for early detection and targeted therapies. Our study presents novel findings that implicate ISG15‐mediated vesicular proteins in the advancement and spread of HGSOC. These results offer pre‐clinical evidence of potential new molecular targets, prognostic markers and therapeutic strategies for HGSOC that could ultimately enhance patient survival
Can consumption of raw vegetables decrease the count of sister chromatid exchange? Results from a cross-sectional study in Krakow, Poland
BACKGROUND: Sister chromatid exchange (SCE) is a widely used sensitive cytogenetic biomarker of exposure to genotoxic and cancerogenic agents. Results of human monitoring studies and cytogenetic damage have revealed that biological effects of genotoxic exposures are influenced by confounding factors related to life-style. Vegetable and fruit consumption may play a role, but available results are not consistent. The purpose of the study was to investigate the effect of consumption of raw and cooked vegetables and fruits on SCE frequency. METHODS: A total of 62 participants included colorectal cancer (CRC) patients, hospital-based controls and healthy laboratory workers. SCE frequency was assessed in blood lymphocytes. Frequency of vegetable and fruit consumption was gathered by structured semi-quantitative food frequency questionnaire. RESULTS: SCE frequency was lowest among hospital-based controls (4.4 ± 1.1), a bit higher in CRC patients (4.5 ± 1.0) and highest among laboratory workers (7.4 ± 1.2) (p < 0.05). Multivariable linear regression showed a significant inverse effect (b = −0.20) of raw vegetable consumption, but not so for intake of cooked vegetables and fruits. CONCLUSIONS: The results of the study have shown the beneficial effect of consumption of raw vegetables on disrupted replication of DNA measured by SCE frequency, implying protection against genotoxic agents. Further effort is required to verify the role of cooked vegetables and fruits
Ovarian tumor cells gain competitive advantage by actively reducing the cellular fitness of microenvironment cells
Cell competition and fitness comparison between cancer and tumor microenvironment (TME) cells determine oncogenic fate. Our previous study established a role for human Flower isoforms as fitness fingerprints, where the expression of Flower Win isoforms in tumor cells leads to growth advantage over TME cells expressing Lose isoforms. Here we demonstrate that the expression of Flower Lose and reduced microenvironment fitness is not a pre-existing condition but, rather, a cancer-induced phenomenon. Cancer cells actively reduce TME fitness by the exosome-mediated release of a cancer-specific long non-coding RNA, Tu-Stroma, which controls the splicing of the Flower gene in the TME cells and expression of Flower Lose isoform, which leads to reduced fitness status. This mechanism controls cancer growth, metastasis and host survival in ovarian cancer. Targeting Flower protein with humanized monoclonal antibody (mAb) in mice significantly reduces cancer growth and metastasis and improves survival. Pre-treatment with Flower mAb protects intraperitoneal organs from developing lesions despite the presence of aggressive tumor cells
