2,534 research outputs found

    Second order brane cosmology with radion stabilization

    Full text link
    We study cosmology in the five-dimensional Randall-Sundrum brane-world with a stabilizing effective potential for the radion and matter localized on the branes. The analysis is performed by employing a perturbative expansion in the ratio rho/V between the matter energy density on the branes and the brane tensions around the static Randall-Sundrum solution (which has rho=0 and brane tensions +-V). This approach ensures that the matter evolves adiabatically and allows us to find approximate solutions to second order in \rho/V. Some particular cases are then analyzed in details.Comment: 17 pages, RevTeX4, 4 figures, final version to appear in Phys. Rev.

    Analytic pulse design for selective population transfer in many-level quantum systems: maximizing amplitude of population oscillations

    Full text link
    State selective preparation and manipulation of discrete-level quantum systems such as atoms, molecules or quantum dots is a the ultimate tool for many diverse fields such as laser control of chemical reactions, atom optics, high-precision metrology and quantum computing. Rabi oscillations are one of the simplest, yet potentially quite useful mechanisms for achieving such manipulation. Rabi theory establishes that in the two-level systems resonant drive leads to the periodic and complete population oscillations between the two system levels. In this paper an analytic optimization algorithm for producing Rabi-like oscillations in the general discrete many-level quantum systems is presented.Comment: Published in Phys.Rev.A. This is the final published versio

    Dynamical Fermion Masses Under the Influence of Kaluza-Klein Fermions and a Bulk Abelian Gauge Field

    Full text link
    The dynamical fermion mass generation on a 3-brane in the 5D space-time is discussed in a model with bulk fermions in interaction with fermions on the brane assuming the presence of a constant abelian gauge field component A5A_5 in the bulk. We calculate the effective potential as a function of the fermion masses and the gauge field component A5A_5. The masses can be found from the stationarity condition for the effective potential (the gap equation). We formulate the equation for the mass spectrum of the 4D--fermions. The phases with finite and vanishing fermion masses are studied and the dependence of the masses on the radius of the 5th dimension is analyzed. The influence of the A5A_5-component of the gauge field on the symmetry breaking is considered both when this field is a background parameter and a dynamical variable. The critical values of the A5A_5 field, the coupling constant and the radius are examined.Comment: 9 pages, 4 figure

    Surface Geometry of 5D Black Holes and Black Rings

    Get PDF
    We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein reduction of the black ring solution (along the direction of its rotation) which relates this solution to the 4D metric of a static black hole distorted by the presence of external scalar (dilaton) and vector (`electromagnetic') field. The properties of the reduced black hole horizon and its embedding in \E^3 are briefly discussed.Comment: 10 pages, 9 figures, Revtex

    Topological Properties from Einstein's Equations?

    Full text link
    In this work we propose a new procedure for to extract global information of a space-time. We considered a space-time immersed in a higher dimensional space and we formulate the equations of Einstein through of the Frobenius conditions to immersion. Through of an algorithm and the implementation into algebraic computing system we calculate normal vectors from the immersion to find out the second fundamental form. We make a application for space-time with spherical symmetry and static. We solve the equations of Einstein to the vacuum and we obtain space-times with different topologies.Comment: 7 pages, accepted for publication in Int. J. Mod. Phys.

    A Quasi-Spherical Gravitational Wave Solution in Kaluza-Klein Theory

    Get PDF
    An exact solution of the source-free Kaluza-Klein field equations is presented. It is a 5D generalization of the Robinson-Trautman quasi-spherical gravitational wave with a cosmological constant. The properties of the 5D solution are briefly described.Comment: 10 pages Latex, Revtex, submitted to GR

    On Dimensional Degression in AdS(d)

    Full text link
    We analyze the pattern of fields in d+1 dimensional anti-de Sitter space in terms of those in d dimensional anti-de Sitter space. The procedure, which is neither dimensional reduction nor dimensional compactification, is called dimensional degression. The analysis is performed group-theoretically for all totally symmetric bosonic and fermionic representations of the anti-de Sitter algebra. The field-theoretical analysis is done for a massive scalar field in AdS(d+d^\prime) and massless spin one-half, spin one, and spin two fields in AdS(d+1). The mass spectra of the resulting towers of fields in AdS(d) are found. For the scalar field case, the obtained results extend to the shadow sector those obtained by Metsaev in [1] by a different method.Comment: 30 page

    Low Energy Branes, Effective Theory and Cosmology

    Full text link
    The low energy regime of cosmological BPS-brane configurations with a bulk scalar field is studied. We construct a systematic method to obtain five-dimensional solutions to the full system of equations governing the geometry and dynamics of the bulk. This is done for an arbitrary bulk scalar field potential and taking into account the presence of matter on the branes. The method, valid in the low energy regime, is a linear expansion of the system about the static vacuum solution. Additionally, we develop a four-dimensional effective theory describing the evolution of the system. At the lowest order in the expansion, the effective theory is a bi-scalar tensor theory of gravity. One of the main features of this theory is that the scalar fields can be stabilized naturally without the introduction of additional mechanisms, allowing satisfactory agreement between the model and current observational constraints. The special case of the Randall-Sundrum model is discussed.Comment: 19 pages, 4 figure

    Thermodynamics of viscous dark energy in an RSII braneworld

    Full text link
    We show that for an RSII braneworld filled with interacting viscous dark energy and dark matter, one can always rewrite the Friedmann equation in the form of the first law of thermodynamics, dE=ThdSh+WdVdE=T_hdS_h+WdV, at apparent horizon. In addition, the generalized second law of thermodynamics can fulfilled in a region enclosed by the apparent horizon on the brane for both constant and time variable 5-dynamical Newton's constant G5G_5. These results hold regardless of the specific form of the dark energy. Our study further support that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.Comment: 11 page

    Finite Temperature and Density Effect on Symmetry Breaking by Wilson Loops

    Full text link
    A finite temperature and density effect of Wilson loop elements on non-simply connected space is investigated in the model suggested by Hosotani. Using one-loop calculations it is shown that the value of an "order parameter" does not shift as the temperature grows. We find that finite density effect is of much importance for restoration of symmetry.Comment: 11pages, no figur
    corecore