2,983 research outputs found
Model Pembelajaran E-Learning (LMS) Untuk Meningkatkan Pemahaman Materi Termodinamika Teknik
The purpose of this research is to produce an e-learning teaching model in order to enhance to comprehension of the thermodynamic technology. There are to main activities, i.e.: identifying the need of teaching material (including the data of category and the topics of suitable lecture material for e-learning, and the pedagogic aspects) and making the e-learning model. Our research subjects are 84 students of mechanical engineering department FPTK UPI who has taken thermodynamic technology lecture. The results of this research are as follows: (a) The LMS (e-learning) thermodynamic technology becomes the centre of student activities (community web based distance learning); (b) Interaction in the student groups, through discussion; and (c) The student administrations system, including attendance, tasks, tests and achievement will be more complete, various and up to date. The research results concerning the thermodynamic technology material are as follows: (a) new information; (b) clear teaching goal formulation; (c) integration between new substance content with loose lecture material; (d) students can show the level of their comprehension through exercise; (e) the concise, short, and compact material explanation; (f) feedback against the evaluation conducted
Dispersive Soft Ferrite Models For Time Domain Simulation And their application To Accelerator Component Modeling
Self-Similar Solutions to a Density-Dependent Reaction-Diffusion Model
In this paper, we investigated a density-dependent reaction-diffusion
equation, . This equation is known as the
extension of the Fisher or Kolmogoroff-Petrovsky-Piscounoff equation which is
widely used in the population dynamics, combustion theory and plasma physics.
By employing the suitable transformation, this equation was mapped to the
anomalous diffusion equation where the nonlinear reaction term was eliminated.
Due to its simpler form, some exact self-similar solutions with the compact
support have been obtained. The solutions, evolving from an initial state,
converge to the usual traveling wave at a certain transition time. Hence, it is
quite clear the connection between the self-similar solution and the traveling
wave solution from these results. Moreover, the solutions were found in the
manner that either propagates to the right or propagates to the left.
Furthermore, the two solutions form a symmetric solution, expanding in both
directions. The application on the spatiotemporal pattern formation in
biological population has been mainly focused.Comment: 5 pages, 2 figures, accepted by Phys. Rev.
On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density
We are concerned with the long time behaviour of solutions to the fractional
porous medium equation with a variable spatial density. We prove that if the
density decays slowly at infinity, then the solution approaches the
Barenblatt-type solution of a proper singular fractional problem. If, on the
contrary, the density decays rapidly at infinity, we show that the minimal
solution multiplied by a suitable power of the time variable converges to the
minimal solution of a certain fractional sublinear elliptic equation.Comment: To appear in DCDS-
Observation of implicit complexity by non confluence
We propose to consider non confluence with respect to implicit complexity. We
come back to some well known classes of first-order functional program, for
which we have a characterization of their intentional properties, namely the
class of cons-free programs, the class of programs with an interpretation, and
the class of programs with a quasi-interpretation together with a termination
proof by the product path ordering. They all correspond to PTIME. We prove that
adding non confluence to the rules leads to respectively PTIME, NPTIME and
PSPACE. Our thesis is that the separation of the classes is actually a witness
of the intentional properties of the initial classes of programs
Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment
A Hadron Blind Detector (HBD) has been developed, constructed and
successfully operated within the PHENIX detector at RHIC. The HBD is a
Cherenkov detector operated with pure CF4. It has a 50 cm long radiator
directly coupled in a window- less configuration to a readout element
consisting of a triple GEM stack, with a CsI photocathode evaporated on the top
surface of the top GEM and pad readout at the bottom of the stack. This paper
gives a comprehensive account of the construction, operation and in-beam
performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method
A Bio-Logical Theory of Animal Learning
This article provides the foundation for a new predictive theory of animal learning that is based upon a simple logical model. The knowledge of experimental subjects at a given time is described using logical equations. These logical equations are then used to predict a subject’s response when presented with a known or a previously unknown situation. This new theory suc- cessfully anticipates phenomena that existing theories predict, as well as phenomena that they cannot. It provides a theoretical account for phenomena that are beyond the domain of existing models, such as extinction and the detection of novelty, from which “external inhibition” can be explained. Examples of the methods applied to make predictions are given using previously published results. The present theory proposes a new way to envision the minimal functions of the nervous system, and provides possible new insights into the way that brains ultimately create and use knowledge about the world
Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source
This paper deals with the long-time behavior of solutions of nonlinear
reaction-diffusion equations describing formation of morphogen gradients, the
concentration fields of molecules acting as spatial regulators of cell
differentiation in developing tissues. For the considered class of models, we
establish existence of a new type of ultra-singular self-similar solutions.
These solutions arise as limits of the solutions of the initial value problem
with zero initial data and infinitely strong source at the boundary. We prove
existence and uniqueness of such solutions in the suitable weighted energy
spaces. Moreover, we prove that the obtained self-similar solutions are the
long-time limits of the solutions of the initial value problem with zero
initial data and a time-independent boundary source
Potential of a cyclone prototype spacer to improve in vitro dry powder delivery
Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe
Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC
A new Hadron Blind Detector (HBD) for electron identification in high density
hadron environment has been installed in the PHENIX detector at RHIC in the
fall of 2006. The HBD will identify low momentum electron-positron pairs to
reduce the combinatorial background in the mass spectrum, mainly
in the low-mass region below 1 GeV/c. The HBD is a windowless
proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI
photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses
pure CF as a radiator and a detector gas. Construction details and the
expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure
- …
