724 research outputs found

    Dynamics of shallow dark solitons in a trapped gas of impenetrable bosons

    Get PDF
    The dynamics of linear and nonlinear excitations in a Bose gas in the Tonks-Girardeau (TG) regime with longitudinal confinement are studied within a mean field theory of quintic nonlinearity. A reductive perturbation method is used to demonstrate that the dynamics of shallow dark solitons, in the presence of an external potential, can effectively be described by a variable-coefficient Korteweg-de Vries equation. The soliton oscillation frequency is analytically obtained to be equal to the axial trap frequency, in agreement with numerical predictions obtained by Busch {\it et al.} [J. Phys. B {\bf 36}, 2553 (2003)] via the Bose-Fermi mapping. We obtain analytical expressions for the evolution of both soliton and emitted radiation (sound) profiles.Comment: 4 pages, Phys. Rev. A (in press

    Dust ion-acoustic shocks in quantum dusty pair-ion plasmas

    Full text link
    The formation of dust ion-acoustic shocks (DIASs) in a four-component quantum plasma whose constituents are electrons, both positive and negative ions and immobile charged dust grains, is studied. The effects of both the dissipation due to kinematic viscosity and the dispersion caused by the charge separation as well as the quantum tunneling due to the Bohm potential are taken into account. The propagation of small but finite amplitude dust ion-acoustic waves (DIAWs) is governed by the Korteweg-de Vries-Burger (KdVB) equation which exhibits both oscillatory and monotonic shocks depending not only on the viscosity parameters, but also on the quantum parameter H (the ratio of the electron plasmon to the electron Fermi energy) and the positive to negative ion density ratio. Large amplitude stationary shocks are recovered for a Mach number exceeding its critical value. Unlike the small amplitude shocks, quite a smaller value of the viscosity parameter, H and the density ratio may lead to the large amplitude monotonic shock strucutres. The results could be of importance in astrophysical and laser produced plasmas.Comment: 15 pages, 5 figure

    Perturbation theory for localized solutions of sine-Gordon equation: decay of a breather and pinning by microresistor

    Full text link
    We develop a perturbation theory that describes bound states of solitons localized in a confined area. External forces and influence of inhomogeneities are taken into account as perturbations to exact solutions of the sine-Gordon equation. We have investigated two special cases of fluxon trapped by a microresistor and decay of a breather under dissipation. Also, we have carried out numerical simulations with dissipative sine-Gordon equation and made comparison with the McLaughlin-Scott theory. Significant distinction between the McLaughlin-Scott calculation for a breather decay and our numerical result indicates that the history dependence of the breather evolution can not be neglected even for small damping parameter

    Solitons in cavity-QED arrays containing interacting qubits

    Full text link
    We reveal the existence of polariton soliton solutions in the array of weakly coupled optical cavities, each containing an ensemble of interacting qubits. An effective complex Ginzburg-Landau equation is derived in the continuum limit taking into account the effects of cavity field dissipation and qubit dephasing. We have shown that an enhancement of the induced nonlinearity can be achieved by two order of the magnitude with a negative interaction strength which implies a large negative qubit-field detuning as well. Bright solitons are found to be supported under perturbations only in the upper (optical) branch of polaritons, for which the corresponding group velocity is controlled by tuning the interacting strength. With the help of perturbation theory for solitons, we also demonstrate that the group velocity of these polariton solitons is suppressed by the diffusion process

    Exact Kink Solitons in the Presence of Diffusion, Dispersion, and Polynomial Nonlinearity

    Full text link
    We describe exact kink soliton solutions to nonlinear partial differential equations in the generic form u_{t} + P(u) u_{x} + \nu u_{xx} + \delta u_{xxx} = A(u), with polynomial functions P(u) and A(u) of u=u(x,t), whose generality allows the identification with a number of relevant equations in physics. We emphasize the study of chirality of the solutions, and its relation with diffusion, dispersion, and nonlinear effects, as well as its dependence on the parity of the polynomials P(u)P(u) and A(u)A(u) with respect to the discrete symmetry uuu\to-u. We analyze two types of kink soliton solutions, which are also solutions to 1+1 dimensional phi^{4} and phi^{6} field theories.Comment: 11 pages, Late

    New features of modulational instability of partially coherent light; importance of the incoherence spectrum

    Full text link
    It is shown that the properties of the modulational instability of partially coherent waves propagating in a nonlinear Kerr medium depend crucially on the profile of the incoherent field spectrum. Under certain conditions, the incoherence may even enhance, rather than suppress, the instability. In particular, it is found that the range of modulationally unstable wave numbers does not necessarily decrease monotonously with increasing degree of incoherence and that the modulational instability may still exist even when long wavelength perturbations are stable.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Shock waves in the dissipative Toda lattice

    Full text link
    We consider the propagation of a shock wave (SW) in the damped Toda lattice. The SW is a moving boundary between two semi-infinite lattice domains with different densities. A steadily moving SW may exist if the damping in the lattice is represented by an ``inner'' friction, which is a discrete analog of the second viscosity in hydrodynamics. The problem can be considered analytically in the continuum approximation, and the analysis produces an explicit relation between the SW's velocity and the densities of the two phases. Numerical simulations of the lattice equations of motion demonstrate that a stable SW establishes if the initial velocity is directed towards the less dense phase; in the opposite case, the wave gradually spreads out. The numerically found equilibrium velocity of the SW turns out to be in a very good agreement with the analytical formula even in a strongly discrete case. If the initial velocity is essentially different from the one determined by the densities (but has the correct sign), the velocity does not significantly alter, but instead the SW adjusts itself to the given velocity by sending another SW in the opposite direction.Comment: 10 pages in LaTeX, 5 figures available upon regues

    Landau damping of partially incoherent Langmuir waves

    Full text link
    It is shown that partial incoherence, in the form of stochastic phase noise, of a Langmuir wave in an unmagnetized plasma gives rise to a Landau-type damping. Starting from the Zakharov equations, which describe the nonlinear interaction between Langmuir and ion-acoustic waves, a kinetic equation is derived for the plasmons by introducing the Wigner-Moyal transform of the complex Langmuir wave field. This equation is then used to analyze the stability properties of small perturbations on a stationary solution consisting of a constant amplitude wave with stochastic phase noise. The concomitant dispersion relation exhibits the phenomenon of Landau-like damping. However, this damping differs from the classical Landau damping in which a Langmuir wave, interacting with the plasma electrons, loses energy. In the present process, the damping is non-dissipative and is caused by the resonant interaction between an instantaneously-produced disturbance, due to the parametric interactions, and a partially incoherent Langmuir wave, which can be considered as a quasi-particle composed of an ensemble of partially incoherent plasmons.Comment: 12 page

    Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability

    Full text link
    We show that the phenomenon of modulational instability in arrays of Bose-Einstein condensates confined to optical lattices gives rise to coherent spatial structures of localized excitations. These excitations represent thin disks in 1D, narrow tubes in 2D, and small hollows in 3D arrays, filled in with condensed atoms of much greater density compared to surrounding array sites. Aspects of the developed pattern depend on the initial distribution function of the condensate over the optical lattice, corresponding to particular points of the Brillouin zone. The long-time behavior of the spatial structures emerging due to modulational instability is characterized by the periodic recurrence to the initial low-density state in a finite optical lattice. We propose a simple way to retain the localized spatial structures with high atomic concentration, which may be of interest for applications. Theoretical model, based on the multiple scale expansion, describes the basic features of the phenomenon. Results of numerical simulations confirm the analytical predictions.Comment: 17 pages, 13 figure

    Solitary Waves Under the Competition of Linear and Nonlinear Periodic Potentials

    Get PDF
    In this paper, we study the competition of linear and nonlinear lattices and its effects on the stability and dynamics of bright solitary waves. We consider both lattices in a perturbative framework, whereby the technique of Hamiltonian perturbation theory can be used to obtain information about the existence of solutions, and the same approach, as well as eigenvalue count considerations, can be used to obtained detailed conditions about their linear stability. We find that the analytical results are in very good agreement with our numerical findings and can also be used to predict features of the dynamical evolution of such solutions.Comment: 13 pages, 4 figure
    corecore