70 research outputs found

    A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000-2014

    Get PDF
    In contrast to the glacier mass losses observed at other locations around the world, some glaciers in the High Mountains of Asia appear to have gained mass in recent decades. However, changes in digital elevation models indicate that glaciers in Karakoram and Pamir have gained mass, while recent laser altimetry data indicate mass gain centred on West Kunlun. Here, we obtain results that are essentially consistent with those from altimetry, but with two-dimensional observations and higher resolution. We produced elevation models using radar interferometry applied to bistatic data gathered between 2011 and 2014 and compared them to a model produced from bistatic data collected in 2000. The glaciers in West Kunlun, Eastern Pamir and the northern part of Karakoram experienced a clear mass gain of 0.043 ± 0.078~0.363 ± 0.065 m w.e. yr−1. The Karakoram showed a near-stable mass balance in its western part (−0.020 ± 0.064 m w.e. yr−1), while the Eastern Karakoram showed mass loss (−0.101 ± 0.058 m w.e. yr−1). Significant positive glacier mass balances are noted along the edge of the Upper Tarim Basin and indicate a decreasing gradient from northeast to southwest

    WATER AND HYGIENE IN THE KHARAA RIVER BASIN, MONGOLIA: CURRENT KNOWLEDGE AND RESEARCH NEEDS

    No full text
    The Kharaa River Basin has some of the highest densities of population, agricultural and industrial activities in Mongolia. This puts the naturally limited water resources under pressure in both a quantitative and qualitative perspective. Besides mining, key sources of surface water contamination include large numbers of livestock in riverine floodplains and the discharge of untreated or poorly treated waste waters, both into rivers and by soil infiltration. Since both shallow groundwater and river water are used by people and for livestock, there are at least theoretical risks related to the transmission of water-borne pathogens. Only a very limited number of studies on water and hygiene have so far been conducted in Mongolia, all indicating (potential) risks to water users. However, a lack of current and reliable water microbiology data leads to the need of systematic screening of water hygiene in order to derive conclusions for public health and drinking water management at the local and regional scale

    Drinking Water Quality at Risk: A European Perspective

    No full text

    Automatic extraction of large-scale aquaculture encroachment areas using Canny Edge Otsu algorithm in Google Earth Engine – the case study of Kolleru Lake, South India

    Full text link
    The aquaculture expansion has made significant contributions to global food security, socio-economic development and, if implemented sustainably, can help preserve stable coastal environments. This study explicitly details the rapid expansion of large-scale aquaculture growth across the Kolleru and Upputeru regions of South India. We developed a novel classification method for automated extraction of aquaculture ponds in the Kolleru zone using the Canny Edge-Otsu algorithm to segment and extract the ponds applied to SAR-VV images in Google Earth Engine. This approach enables the area estimation of dense aquaculture ponds are essential for monitoring and management purposes. The results indicated that this method could effectively map the aquaculture ponds and the overall accuracy achieved in 2020 for the Kolleru and Upputeru areas by 90.6% and 95.7%, respectively. The aquaculture maps of this study can help government organizations, resource managers, stakeholders, and decision-makers understand the dynamics and plan sustainable measures in this area

    Interplay between host cell and hepatitis C virus in regulating viral replication

    No full text
    Viral life cycle as that of the hepatitis C virus (HCV) completely relies on host cell infrastructure, presupposing that the virus has evolved mechanisms to utilize and control all cellular molecules or pathways required for viral life cycle. Hence, HCV must have acquired the ability to gain access to key pathways controlling processes, such as cell growth, apoptosis and protein synthesis, which are all considered to also be crucial for liver regeneration. This occurs in a balanced way permitting persistent replication of viral genomes and production of infectious particles without endangering host cell viability and survival. In particular during the last decade, accumulating evidence indicates that HCV utilizes signaling pathways of the host with major impact on cellular growth, viability, cell cycle or cellular metabolism, such as epidermal growth factor-receptor mediated signals, the PI3K/Akt cascade or the family of Src kinases. Furthermore, HCV specifically interacts with parts of the cellular machinery involved in protein translation, processing, maturation and transport, such as components of the translation complex, the heat shock protein family, the immunophilins or the vesicle-associated membrane protein-associated proteins A and B. The present review focuses on the interplay between viral proteins and these factors of the host cell enabling the virus to utilize host cell infrastructure

    Interplay between host cell and hepatitis C virus in regulating viral replication

    Full text link
    Abstract Viral life cycle as that of the hepatitis C virus (HCV) completely relies on host cell infrastructure, presupposing that the virus has evolved mechanisms to utilize and control all cellular molecules or pathways required for viral life cycle. Hence, HCV must have acquired the ability to gain access to key pathways controlling processes, such as cell growth, apoptosis and protein synthesis, which are all considered to also be crucial for liver regeneration. This occurs in a balanced way permitting persistent replication of viral genomes and production of infectious particles without endangering host cell viability and survival. In particular during the last decade, accumulating evidence indicates that HCV utilizes signaling pathways of the host with major impact on cellular growth, viability, cell cycle or cellular metabolism, such as epidermal growth factor-receptor mediated signals, the PI3K/Akt cascade or the family of Src kinases. Furthermore, HCV specifically interacts with parts of the cellular machinery involved in protein translation, processing, maturation and transport, such as components of the translation complex, the heat shock protein family, the immunophilins or the vesicle-associated membrane protein-associated proteins A and B. The present review focuses on the interplay between viral proteins and these factors of the host cell enabling the virus to utilize host cell infrastructure.</jats:p
    corecore