73 research outputs found
UMTV: a Single Chip TV Receiver for PDAs, PCs and Cell Phones
A zero-external-component TV receiver for portable platforms is realized in a mainstream 8GHz-f/sub t/ BiCMOS process. Die size is 5/spl times/5mm/sup 2/ and power dissipation is 50mA at 3V. The receiver includes a single tunable LNA (3mA) with less than 5dB NF from 40 to 900MHz. The programmable IF filters cover all analog and digital standards
Quantum Mechanics on the cylinder
A new approach to deformation quantization on the cylinder considered as
phase space is presented. The method is based on the standard Moyal formalism
for R^2 adapted to (S^1 x R) by the Weil--Brezin--Zak transformation. The
results are compared with other solutions of this problem presented by
Kasperkovitz and Peev (Ann. Phys. vol. 230, 21 (1994)0 and by Plebanski and
collaborators (Acta Phys. Pol. vol. B 31}, 561 (2000)). The equivalence of
these three methods is proved.Comment: 21 pages, LaTe
Decoherence of molecular wave packets in an anharmonic potential
The time evolution of anharmonic molecular wave packets is investigated under
the influence of the environment consisting of harmonic oscillators. These
oscillators represent photon or phonon modes and assumed to be in thermal
equilibrium. Our model explicitly incorporates the fact that in the case of a
nonequidistant spectrum the rates of the environment induced transitions are
different for each transition. The nonunitary time evolution is visualized by
the aid of the Wigner function related to the vibrational state of the
molecule. The time scale of decoherence is much shorter than that of
dissipation, and gives rise to states which are mixtures of localized states
along the phase space orbit of the corresponding classical particle. This
behavior is to a large extent independent of the coupling strength, the
temperature of the environment and also of the initial state.Comment: 7 pages, 4 figure
A New Non-Perturbative Approach to Quantum Theory in Curved Spacetime Using the Wigner Function
A new non-perturbative approach to quantum theory in curved spacetime and to
quantum gravity, based on a generalisation of the Wigner equation, is proposed.
Our definition for a Wigner equation differs from what have otherwise been
proposed, and does not imply any approximations. It is a completely exact
equation, fully equivalent to the Heisenberg equations of motion. The approach
makes different approximation schemes possible, e.g. it is possible to perform
a systematic calculation of the quantum effects order by order. An iterative
scheme for this is also proposed. The method is illustrated with some simple
examples and applications. A calculation of the trace of the renormalised
energy-momentum tensor is done, and the conformal anomaly is thereby related to
non-conservation of a current in d=2 dimensions and a relationship between a
vector and an axial-vector current in d=4 dimensions.
The corresponding ``hydrodynamic equations'' governing the evolution of
macroscopic quantities are derived by taking appropriate moments. The emphasis
is put on the spin-1/2 case, but it is shown how to extend to arbitrary spins.
Gravity is treated first in the Palatini formalism, which is not very
tractable, and then more successfully in the Ashtekar formalism, where the
constraints lead to infinite order differential equations for the Wigner
functions.Comment: LaTeX2e (uses amssymb), 36 page
Quantum Tunneling in the Wigner Representation
Time dependence for barrier penetration is considered in the phase space. An
asymptotic phase-space propagator for nonrelativistic scattering on a one -
dimensional barrier is constructed. The propagator has a form universal for
various initial state preparations and local potential barriers. It is
manifestly causal and includes time-lag effects and quantum spreading. Specific
features of quantum dynamics which disappear in the standard semi-classical
approximation are revealed. The propagator may be applied to calculation of the
final momentum and coordinate distributions, for particles transmitted through
or reflected from the potential barrier, as well as for elucidating the
tunneling time problem.Comment: 18 pages, LATEX, no figure
A low-phase-noise reference oscillator with integrated pMOS varactors for digital satellite receivers
The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis
INTRODUCTION: Activated fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) share many characteristics with tumour cells and are key mediators of synovial tissue transformation and joint destruction. The glycoprotein podoplanin is upregulated in the invasive front of several human cancers and has been associated with epithelial-mesenchymal transition, increased cell migration and tissue invasion. The aim of this study was to investigate whether podoplanin is expressed in areas of synovial transformation in RA and especially in promigratory RA-FLS. METHODS: Podoplanin expression in human synovial tissue from 18 RA patients and nine osteoarthritis (OA) patients was assessed by immunohistochemistry and confirmed by Western blot analysis. The expression was related to markers of synoviocytes and myofibroblasts detected by using confocal immunofluoresence microscopy. Expression of podoplanin, with or without the addition of proinflammatory cytokines and growth factors, in primary human FLS was evaluated by using flow cytometry. RESULTS: Podoplanin was highly expressed in cadherin-11-positive cells throughout the synovial lining layer in RA. The expression was most pronounced in areas with lining layer hyperplasia and high matrix metalloproteinase 9 expression, where it coincided with upregulation of α-smooth muscle actin (α-sma). The synovium in OA was predominantly podoplanin-negative. Podoplanin was expressed in 50% of cultured primary FLSs, and the expression was increased by interleukin 1β, tumour necrosis factor α and transforming growth factor β receptor 1. CONCLUSIONS: Here we show that podoplanin is highly expressed in FLSs of the invading synovial tissue in RA. The concomitant upregulation of α-sma and podoplanin in a subpopulation of FLSs indicates a myofibroblast phenotype. Proinflammatory mediators increased the podoplanin expression in cultured RA-FLS. We conclude that podoplanin might be involved in the synovial tissue transformation and increased migratory potential of activated FLSs in RA
Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis
Introduction: Rheumatoid arthritis (RA) is a T-cell-mediated systemic autoimmune disease, characterized by synovium inflammation and articular destruction. Bone marrow mesenchymal stem cells (MSCs) could be effective in the treatment of several autoimmune diseases. However, there has been thus far no report on umbilical cord (UC)-MSCs in the treatment of RA. Here, potential immunosuppressive effects of human UC-MSCs in RA were evaluated. Methods: The effects of UC-MSCs on the responses of fibroblast-like synoviocytes (FLSs) and T cells in RA patients were explored. The possible molecular mechanism mediating this immunosuppressive effect of UC-MSCs was explored by addition of inhibitors to indoleamine 2,3-dioxygenase (IDO), Nitric oxide (NO), prostaglandin E2 (PGE2), transforming growth factor beta 1 (TGF-beta 1) and interleukin 10 (IL-10). The therapeutic effects of systemic infusion of human UC-MSCs on collagen-induced arthritis (CIA) in a mouse model were explored. Results: In vitro, UC-MSCs were capable of inhibiting proliferation of FLSs from RA patients, via IL-10, IDO and TGF-beta 1. Furthermore, the invasive behavior and IL-6 secretion of FLSs were also significantly suppressed. On the other hand, UC-MSCs induced hyporesponsiveness of T cells mediated by PGE2, TGF-beta 1 and NO and UC-MSCs could promote the expansion of CD4(+) Foxp3(+) regulatory T cells from RA patients. More importantly, systemic infusion of human UC-MSCs reduced the severity of CIA in a mouse model. Consistently, there were reduced levels of proinflammatory cytokines and chemokines (TNF-alpha, IL-6 and monocyte chemoattractant protein-1) and increased levels of the anti-inflammatory/regulatory cytokine (IL-10) in sera of UC-MSCs treated mice. Moreover, such treatment shifted Th1/Th2 type responses and induced Tregs in CIA. Conclusions: In conclusion, human UC-MSCs suppressed the various inflammatory effects of FLSs and T cells of RA in vitro, and attenuated the development of CIA in vivo, strongly suggesting that UC-MSCs might be a therapeutic strategy in RA. In addition, the immunosuppressive activitiy of UC-MSCs could be prolonged by the participation of Tregs.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000287517000020&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701RheumatologySCI(E)PubMed64ARTICLE6R2101
Characterisation of Innate Fungal Recognition in the Lung
The innate recognition of fungi by leukocytes is mediated by pattern recognition receptors (PRR), such as Dectin-1, and is thought to occur at the cell surface triggering intracellular signalling cascades which lead to the induction of protective host responses. In the lung, this recognition is aided by surfactant which also serves to maintain the balance between inflammation and pulmonary function, although the underlying mechanisms are unknown. Here we have explored pulmonary innate recognition of a variety of fungal particles, including zymosan, Candida albicans and Aspergillus fumigatus, and demonstrate that opsonisation with surfactant components can limit inflammation by reducing host-cell fungal interactions. However, we found that this opsonisation does not contribute directly to innate fungal recognition and that this process is mediated through non-opsonic PRRs, including Dectin-1. Moreover, we found that pulmonary inflammatory responses to resting Aspergillus conidia were initiated by these PRRs in acidified phagolysosomes, following the uptake of fungal particles by leukocytes. Our data therefore provides crucial new insights into the mechanisms by which surfactant can maintain pulmonary function in the face of microbial challenge, and defines the phagolysosome as a novel intracellular compartment involved in the innate sensing of extracellular pathogens in the lung
DKK1 expression by synovial fibroblasts in very early rheumatoid arthritis associates with lymphocyte adhesion in an in vitro flow co-culture system
- …
