6,679 research outputs found

    Spin Gap in Two-Dimensional Heisenberg Model for CaV4_4O9_9

    Full text link
    We investigate the mechanism of spin gap formation in a two-dimensional model relevant to Mott insulators such as CaV4_4O9_9. From the perturbation expansion and quantum Monte Carlo calculations, the origin of the spin gap is ascribed to the four-site plaquette singlet in contrast to the dimer gap established in the generalized dimerized Heisenberg model.Comment: 8 pages, 6 figures available upon request (Revtex

    Quantum Wire-on-Well (WoW) Cell With Long Carrier Lifetime for Efficient Carrier Transport

    Get PDF
    A quantum wire-on-well (WoW) structure, taking advantage of the layer undulation of an In- GaAs/GaAs/GaAsP superlattice grown on a vicinal substrate, was demonstrated to enhance the carrier collection from the confinement levels and extend the carrier lifetime (220 ns) by approximately 4 times as compared with a planar reference superlattice. Strained InGaAs/GaAs/GaAsP superlattices were grown on GaAs substrates under exactly the same condition except for the substrate misorientation (0o- and 6o- off). The growth on a 6o-off substrate induced significant layer undulation as a result of step bunching and non-uniform precursor incorporation between steps and terraces whereas the growth on a substrate without miscut resulted in planar layers. The undulation was the most significant for InGaAs layers, forming periodically aligned InGaAs nanowires on planar wells, a wire-on-well structure. As for the photocurrent corresponding to the sub-bandgap range of GaAs, the light absorption by the WoW was extended to longer wavelengths and weakened as compared with the planar superlattice, and almost the same photocurrent was obtained for both the WoW and the planar superlattice. Open-circuit voltage for the WoW was not affected by the longer-wavelength absorption edge and the same value was obtained for the two structures. Furthermore, the superior carrier collection in the WoW, especially under forward biases, improved fill factor compared with the planer superlattice

    Impurity Effect on Spin Ladder System

    Full text link
    Effects of nonmagnetic impurity doping in a spin ladder system with a spin gap are investigated by the exact diagonalization as well as by the variational Monte Carlo calculations. Substantial changes in macroscopic properties such as enhancements in spin correlations and magnetic susceptibilities are observed in the low impurity concentration region, which are caused by the increase of low-energy states. These results suggest that small but finite amount of nonmagnetic impurity doping relevantly causes the reduction or the vanishment of the spin gap. This qualitatively explains the experimental result of Zn-doped SrCu2_{2}O3_{3} where small doping induces gapless nature. We propose a possible scenario for this drastic change as a quantum phase transition in a spin gapped ladder system due to spinon doping effects.Comment: 14 pages LaTeX including 5 PS figure

    Contraction of cross-linked actomyosin bundles

    Full text link
    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the time scale for contraction as a viscoelastic time tau, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time tau ~ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.Comment: To be published in Physical Biolog

    Weakly Coupled Antiferromagnetic Quantum Spin Chains

    Full text link
    Quasi-one-dimensional quantum antiferromagnets formed by a d-dimensional hypercubic lattice of weakly coupled spin-1/2 antiferromagnetic Heisenberg chains are studied by combining exact results in one-dimension and renormalization group analyses of the interchain correlations. It is shown that d-dimensional magnetic long-range order develops at zero-temperature for infinitesimal antiferromagnetic or ferromagnetic interchain couplings. In the presence of weak bond alternations, the order-disorder transition occurs at a finite interchain coupling. Relevances to the lightly doped quantum antiferromagnets and multi-layer quantum Hall systems are discussed.Comment: 12 revtex pages, no figures, revised final version to appear in PR

    Magnetization Plateau of an S=1 Frustrated Spin Ladder

    Full text link
    We study the magnetization plateau at 1/4 of the saturation magnetization of the S=1 antiferromagnetic spin ladder both analytically and numerically, with the aim of explaining recent experimental results on BIP-TENO by Goto et al. We propose two mechanisms for the plateau formation and clarify the plateau phase diagram on the plane of the coupling constants between spins

    The Heisenberg model on the 1/5-depleted square lattice and the CaV4O9 compound

    Full text link
    We investigate the ground state structure of the Heisenberg model on the 1/5-depleted square lattice for arbitrary values of the first- and second-neighbor exchange couplings. By using a mean-field Schwinger-boson approach we present a unified description of the rich ground-state diagram, which include the plaquette and dimer resonant-valence-bond phases, an incommensurate phase and other magnetic orders with complex magnetic unit cells. We also discuss some implications of ours results for the experimental realization of this model in the CaV4O9 compound.Comment: 4 pages, Latex, 7 figures included as eps file

    Scaling Properties of Antiferromagnetic Transition in Coupled Spin Ladder Systems Doped with Nonmagnetic Impurities

    Full text link
    We study effects of interladder coupling on critical magnetic properties of spin ladder systems doped with small concentrations of nonmagnetic impurities, using the scaling theory together with quantum Monte Carlo (QMC) calculations. Scaling properties in a wide region in the parameter space of the impurity concentration x and the interladder coupling are governed by the quantum critical point (QCP) of the undoped system for the transition between antiferromagnetically ordered and spin-gapped phases. This multi-dimensional and strong-coupling region has characteristic power-law dependences on x for magnetic properties such as the N\'eel temperature. The relevance of this criticality for understanding experimental results of ladder compounds is stressed.Comment: 4 pages LaTeX including 3 PS figure
    corecore