491 research outputs found
Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions
Increased reflectance from the inclusion of highly scattering particles at
low volume fractions in an insulating dielectric offers a promising way to
reduce radiative thermal losses at high temperatures. Here, we investigate
plasmonic resonance driven enhanced scattering from microinclusions of
low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating
composite to tailor its infrared reflectance for minimizing thermal losses from
radiative transfer. To this end, we compute the spectral properties of the
microcomposites using Monte Carlo modeling and compare them with results from
Fresnel equations. The role of particle size-dependent Mie scattering and
absorption efficiencies, and, scattering anisotropy are studied to identify the
optimal microinclusion size and material parameters for maximizing the
reflectance of the thermal radiation. For composites with Si and Ge
microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident
blackbody radiation from sources at temperatures in the range 400 - 1600
{\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from
the plasmonic resonances due to charge carriers generated from defect states
within the semiconductor bandgap. Our results thus open up the possibility of
developing efficient high-temperature thermal insulators through use of the
low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8
Figures
Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease.
Aging is characterized by a progressive decline in the function of adult tissues which can lead to neurodegenerative disorders. However, little is known about the correlation between protein changes in the subventricular zone (SVZ) and neurodegenerative diseases with age. In the present study, neural stem cells (NSCs) were derived from the SVZ on postnatal 7 d, 1 m, and 12 m-old mice. With age, NSCs exhibited increased SA-β-gal activity and decreased proliferation and pool size in the SVZ zone, and were associated with elevated inflammatory chemokines and cytokines. Furthermore, quantitative proteomics and ingenuity pathway analysis were used to evaluate the significant age-related alterations in proteins and their functions. Some downregulated proteins such as DPYSL2, TPI1, ALDH, and UCHL1 were found to play critical roles in the neurological disease and PSMA1, PSMA3, PSMC2, PSMD11, and UCHL1 in protein homeostasis. Taken together, we have provided valuable insight into the cellular and molecular processes that underlie aging-associated declines in SVZ neurogenesis for the early detection of differences in gene expression and the potential risk of neurological disease, which is beneficial in the prevention of the diseases
- …
