2,090 research outputs found

    Hierarchical Subquery Evaluation for Active Learning on a Graph

    Get PDF
    To train good supervised and semi-supervised object classifiers, it is critical that we not waste the time of the human experts who are providing the training labels. Existing active learning strategies can have uneven performance, being efficient on some datasets but wasteful on others, or inconsistent just between runs on the same dataset. We propose perplexity based graph construction and a new hierarchical subquery evaluation algorithm to combat this variability, and to release the potential of Expected Error Reduction. Under some specific circumstances, Expected Error Reduction has been one of the strongest-performing informativeness criteria for active learning. Until now, it has also been prohibitively costly to compute for sizeable datasets. We demonstrate our highly practical algorithm, comparing it to other active learning measures on classification datasets that vary in sparsity, dimensionality, and size. Our algorithm is consistent over multiple runs and achieves high accuracy, while querying the human expert for labels at a frequency that matches their desired time budget.Comment: CVPR 201

    Certification of damage tolerant composite structure

    Get PDF
    A reliability based certification testing methodology for impact damage tolerant composite structure was developed. Cocured, adhesively bonded, and impact damaged composite static strength and fatigue life data were statistically analyzed to determine the influence of test parameters on the data scatter. The impact damage resistance and damage tolerance of various structural configurations were characterized through the analysis of an industry wide database of impact test results. Realistic impact damage certification requirements were proposed based on actual fleet aircraft data. The capabilities of available impact damage analysis methods were determined through correlation with experimental data. Probabilistic methods were developed to estimate the reliability of impact damaged composite structures

    Electromagnetically Induced Transparency (EIT) and Autler-Townes (AT) splitting in the Presence of Band-Limited White Gaussian Noise

    Full text link
    We investigate the effect of band-limited white Gaussian noise (BLWGN) on electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting, when performing atom-based continuous-wave (CW) radio-frequency (RF) electric (E) field strength measurements with Rydberg atoms in an atomic vapor. This EIT/AT-based E-field measurement approach is currently being investigated by several groups around the world as a means to develop a new SI traceable RF E-field measurement technique. For this to be a useful technique, it is important to understand the influence of BLWGN. We perform EIT/AT based E-field experiments with BLWGN centered on the RF transition frequency and for the BLWGN blue-shifted and red-shifted relative to the RF transition frequency. The EIT signal can be severely distorted for certain noise conditions (band-width, center-frequency, and noise power), hence altering the ability to accurately measure a CW RF E-field strength. We present a model to predict the changes in the EIT signal in the presence of noise. This model includes AC Stark shifts and on resonance transitions associated with the noise source. The results of this model are compared to the experimental data and we find very good agreement between the two.Comment: 14 page, 15 figures, 1 tabl

    On the Usability of Probably Approximately Correct Implication Bases

    Full text link
    We revisit the notion of probably approximately correct implication bases from the literature and present a first formulation in the language of formal concept analysis, with the goal to investigate whether such bases represent a suitable substitute for exact implication bases in practical use-cases. To this end, we quantitatively examine the behavior of probably approximately correct implication bases on artificial and real-world data sets and compare their precision and recall with respect to their corresponding exact implication bases. Using a small example, we also provide qualitative insight that implications from probably approximately correct bases can still represent meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph

    Efficient Peltier refrigeration by a pair of normal metal/ insulator/superconductor junctions

    Full text link
    We suggest and demonstrate in experiment that two normal metal /insulator/ superconductor (NIS) tunnel junctions combined in series to form a symmetric SINIS structure can operate as an efficient Peltier refrigerator. Specifically, it is shown that the SINIS structure with normal-state junction resistances 1.0 and 1.1 kΩ\Omega is capable of reaching a temperature of about 100 mK starting from 300 mK. We estimate the corresponding cooling power to be 1.5 pW per total junction area of 0.8 μ\mum2^2 at T=300T= 300 mK.Comment: 7 pages, revtex, 3 figures by fax/conventional mail upon reques

    Effects of impurities on radiation damage of silicon solar cells

    Get PDF
    Impurities effects on radiation damage of silicon solar cell

    Survey-propagation decimation through distributed local computations

    Full text link
    We discuss the implementation of two distributed solvers of the random K-SAT problem, based on some development of the recently introduced survey-propagation (SP) algorithm. The first solver, called the "SP diffusion algorithm", diffuses as dynamical information the maximum bias over the system, so that variable nodes can decide to freeze in a self-organized way, each variable making its decision on the basis of purely local information. The second solver, called the "SP reinforcement algorithm", makes use of time-dependent external forcing messages on each variable, which let the variables get completely polarized in the direction of a solution at the end of a single convergence. Both methods allow us to find a solution of the random 3-SAT problem in a range of parameters comparable with the best previously described serialized solvers. The simulated time of convergence towards a solution (if these solvers were implemented on a distributed device) grows as log(N).Comment: 18 pages, 10 figure

    Inverse ac Josephson Effect for a Fluxon in a Long Modulated Junction

    Full text link
    We analyze motion of a fluxon in a weakly damped ac-driven long Josephson junction with a periodically modulated maximum Josephson current density. We demonstrate both analytically and numerically that a pure {\it ac} bias current can drive the fluxon at a {\it resonant} mean velocity determined by the driving frequency and the spatial period of the modulation, provided that the drive amplitude exceeds a certain threshold value. In the range of strongly ``relativistic'' mean velocities, the agreement between results of a numerical solution of the effective (ODE) fluxon equation of motion and analytical results obtained by means of the harmonic-balance analysis is fairly good; morever, a preliminary PDE result tends to confirm the validity of the collective-coordinate (PDE-ODE) reduction. At nonrelativistic mean velocities, the basin of attraction, in position-velocity space, for phase-locked solutions becomes progressively smaller as the mean velocity is decreased.Comment: 15 pages, 26 kbytes, of text in plain LaTeX. A uuencoded, Z-compressed tar archive, 21 kbytes, containing 3 PostScript, [email protected], [email protected], [email protected]

    Self-Assembly of 4-sided Fractals in the Two-handed Tile Assembly Model

    Full text link
    We consider the self-assembly of fractals in one of the most well-studied models of tile based self-assembling systems known as the Two-handed Tile Assembly Model (2HAM). In particular, we focus our attention on a class of fractals called discrete self-similar fractals (a class of fractals that includes the discrete Sierpi\'nski carpet). We present a 2HAM system that finitely self-assembles the discrete Sierpi\'nski carpet with scale factor 1. Moreover, the 2HAM system that we give lends itself to being generalized and we describe how this system can be modified to obtain a 2HAM system that finitely self-assembles one of any fractal from an infinite set of fractals which we call 4-sided fractals. The 2HAM systems we give in this paper are the first examples of systems that finitely self-assemble discrete self-similar fractals at scale factor 1 in a purely growth model of self-assembly. Finally, we show that there exists a 3-sided fractal (which is not a tree fractal) that cannot be finitely self-assembled by any 2HAM system
    corecore