658 research outputs found

    SO(10) SUSY GUT for Fermion Masses : Lepton Flavor and CP Violation

    Get PDF
    We discuss the results of a global χ2\chi^2 analysis of a simple SO(10) SUSY GUT with D3D_3 family symmetry and low energy R parity. The model describes fermion mass matrices with 14 parameters and gives excellent fits to 20 observable masses and mixing angles in both quark and lepton sectors, giving 6 predictions. Bi-large neutrino mixing is obtained with hierarchical quark and lepton Yukawa matrices; thus avoiding the possibility of large lepton flavor violation. The model naturally predicts small 1-3 neutrino mixing, with sinθ130.050.06\sin \theta_{13} \simeq 0.05 - 0.06. In this paper we evaluate the predictions for the lepton flavor violating processes, μeγ\mu \to e \gamma, τμγ\tau \to \mu \gamma and τeγ\tau \to e \gamma and also the electric dipole moment of the electron, ded_e, muon and tau, assuming universal squark and slepton masses, m16m_{16}, and a universal soft SUSY breaking A parameter, A0A_0, at the GUT scale. We find Br(μeγ)Br(\mu \to e \gamma) is naturally below present bounds, but may be observable by MEG. Similarly, ded_e is below present bounds; but is within the range of future experiments. We also give predictions for the light Higgs mass (using FeynHiggs). We find an upper bound given by mh127m_h \leq 127 GeV, with an estimated ±3\pm 3 GeV theoretical uncertainty. Finally we present predictions for SUSY particle masses in the favored region of parameter space.Comment: 25 pages, 18 figures, several typos in captions of tables 2 and 3 corrected, acknowledgments adde

    The Minimal Model for Dark Matter and Unification

    Full text link
    Gauge coupling unification and the success of TeV-scale weakly interacting dark matter are usually taken as evidence of low energy supersymmetry (SUSY). However, if we assume that the tuning of the higgs can be explained in some unnatural way, from environmental considerations for example, SUSY is no longer a necessary component of any Beyond the Standard Model theory. In this paper we study the minimal model with a dark matter candidate and gauge coupling unification. This consists of the SM plus fermions with the quantum numbers of SUSY higgsinos, and a singlet. It predicts thermal dark matter with a mass that can range from 100 GeV to around 2 TeV and generically gives rise to an electric dipole moment that is just beyond current experimental limits, with a large portion of its allowed parameter space accessible to next generation EDM and direct detection experiments. We study precision unification in this model by embedding it in a 5-D orbifold GUT where certain large threshold corrections are calculable, achieving gauge coupling and b-tau unification, and predicting a rate of proton decay just beyond current limits.Comment: 20 pages, 10 figures. v2: Minor typos and Reference errors corrected. Modified explanation of the KK mode contribution to runnin

    Can Measurements of Electric Dipole Moments Determine the Seesaw Parameters?

    Get PDF
    In the context of the supersymmetrized seesaw mechanism embedded in the Minimal Supersymmetric Standard Model (MSSM), complex neutrino Yukawa couplings can induce Electric Dipole Moments (EDMs) for the charged leptons, providing an additional route to seesaw parameters. However, the complex neutrino Yukawa matrix is not the only possible source of CP violation. Even in the framework of Constrained MSSM (CMSSM), there are additional sources, usually attributed to the phases of the trilinear soft supersymmetry breaking couplings and the mu-term, which contribute not only to the electron EDM but also to the EDMs of neutron and heavy nuclei. In this work, by combining bounds on various EDMs, we analyze how the sources of CP violation can be discriminated by the present and planned EDM experiments.Comment: 26 pages, 9 figures; added reference

    All electromagnetic form factors

    Full text link
    The electromagnetic form factors of spin-1/2 particles are known, but due to historical reasons only half of them are found in many textbooks. Given the importance of the general result, its model independence, its connection to discrete symmetries and their violations we made an effort to derive and present the general result based only on the knowledge of Dirac equation. We discuss the phenomenology connected directly with the form factors, and spin precession in external fields including time reversal violating terms. We apply the formalism to spin-flip synchrotron radiation and suggest pedagogical projects.Comment: Latex, 22 page

    Test of CPT and Lorentz invariance from muonium spectroscopy

    Get PDF
    Following a suggestion of Kostelecky et al. we have evaluated a test of CPT and Lorentz invariance from the microwave spectroscopy of muonium. Hamiltonian terms beyond the standard model violating CPT and Lorentz invariance would contribute frequency shifts δν12\delta\nu_{12} and δν34\delta\nu_{34} to ν12\nu_{12} and ν34\nu_{34}, the two transitions involving muon spin flip, which were precisely measured in ground state muonium in a strong magnetic field of 1.7 T. The shifts would be indicated by anti-correlated oscillations in ν12\nu_{12} and ν34\nu_{34} at the earth's sidereal frequency. No time dependence was found in ν12\nu_{12} or ν34\nu_{34} at the level of 20 Hz, limiting the size of some CPT and Lorentz violating parameters at the level of 2×10232\times10^{-23} GeV, representing Planck scale sensitivity and an order of magnitude improvement in sensitivity over previous limits for the muon.Comment: 4 pages, 4 figures, uses REVTeX and epsf, submitted to Phys. Rev. Let

    High-resolution saturation spectroscopy of singly-ionized iron with a pulsed uv laser

    Full text link
    We describe the design and realization of a scheme for uv laser spectroscopy of singly-ionized iron (Fe II) with very high resolution. A buffer-gas cooled laser ablation source is used to provide a plasma close to room temperature with a high density of Fe II. We combine this with a scheme for pulsed-laser saturation spectroscopy to yield sub-Doppler resolution. In a demonstration experiment, we have examined an Fe II transition near 260 nm, attaining a linewidth of about 250 MHz. The method is well-suited to measuring transition frequencies and hyperfine structure. It could also be used to measure small isotope shifts in isotope-enriched samples.Comment: 9 pages, 5 figures, updated Fig. 3. For submission to J. Phys.

    Reconstructing the two right-handed neutrino model

    Full text link
    In this paper we propose a low-energy parametrization of the two right-handed neutrino model, and discuss the prospects to determine experimentally these parameters in supersymmetric scenarios. In addition, we present exact formulas to reconstruct the high-energy leptonic superpotential in terms of the low-energy observables. We also discuss limits of the three right-handed neutrino model where this procedure applies.Comment: 28 pages, 4 figures. Typos corrected, references adde

    A Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the PHENIX experiment at RHIC. The HBD will allow a precise measurement of electron-positron pairs from the decay of the light vector mesons and the low-mass pair continuum in heavy-ion collisions. The detector consists of a 50 cm long radiator filled with pure CF4 and directly coupled in a windowless configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding

    Search for Lorentz and CPT Violation Effects in Muon Spin Precession

    Full text link
    The spin precession frequency of muons stored in the (g2)(g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for: a nonzero Δωa\Delta\omega_{a} (=ωaμ+ωaμ\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}); and a sidereal variation of ωaμ±\omega_{a}^{\mu^{\pm}}. No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ=(1.0±1.1)×1023b_{Z} =-(1.0 \pm 1.1)\times 10^{-23} GeV; (mμdZ0+HXY)=(1.8±6.0×1023)(m_{\mu}d_{Z0}+H_{XY}) = (1.8 \pm 6.0 \times 10^{-23}) GeV; and the 95% confidence level limits bˇμ+<1.4×1024\check{b}_{\perp}^{\mu^{+}}< 1.4 \times 10^{-24} GeV and bˇμ<2.6×1024\check{b}_{\perp}^{\mu^{-}} < 2.6 \times 10^{-24} GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to answer the referees suggestion

    News from the Muon (g-2) Experiment at BNL

    Get PDF
    The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has been measured at the Brookhaven Alternating Gradient Synchrotron with an uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees well with previous measurements. Standard Model evaluations currently differ from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz, Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc. Suppl.); 5 pages, 3 figure
    corecore