2,130 research outputs found
Milky Way's Thick and Thin disk: Is there distinct thick disk?
This article is based on our discussion session on Milky Way models at the
592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic
Surveys, Asteroseismology and Chemodynamical models. The discussion focused on
the following question: "Are there distinct thick and thin disks?". The answer
to this question depends on the definition one adopts for thin and thick disks.
The participants of this discussion converged to the idea that there are at
least two different types of disks in the Milky Way. However, there are still
important open questions on how to best define these two types of disks
(chemically, kinematically, geometrically or by age?). The question of what is
the origin of the distinct disks remains open. The future Galactic surveys
which are highlighted in this conference should help us answering these
questions. The almost one-hour debate involving researchers in the field
representing different modelling approaches (Galactic models such as TRILEGAL,
Besancon and Galaxia, chemical evolution models, extended distribution
functions method, chemodynamics in the cosmological context, and
self-consistent cosmological simulations) illustrated how important is to have
all these parallel approaches. All approaches have their advantages and
shortcomings (also discussed), and different approaches are useful to address
specific points that might help us answering the more general question above.Comment: 7 pages, no figure. To appear in Astronomische Nachrichten, special
issue "Reconstruction the Milky Way's History: Spectroscopic surveys,
Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J.
Montalban, and M. Steffe
Simulating a White Dwarf-dominated Galactic Halo
Observational evidence has suggested the possibility of a Galactic halo which
is dominated by white dwarfs (WDs). While debate continues concerning the
interpretation of this evidence, it is clear that an initial mass function
(IMF) biased heavily toward WD precursors (1 < m/Msol < 8), at least in the
early Universe, would be necessary in generating such a halo. Within the
framework of homogeneous, closed-box models of Galaxy formation, such biased
IMFs lead to an unavoidable overproduction of carbon and nitrogen relative to
oxygen (as measured against the abundance patterns in the oldest stars of the
Milky Way). Using a three-dimensional Tree N-body smoothed particle
hydrodynamics code, we study the dynamics and chemical evolution of a galaxy
with different IMFs. Both invariant and metallicity-dependent IMFs are
considered. Our variable IMF model invokes a WD-precursor-dominated IMF for
metallicities less than 5% solar (primarily the Galactic halo), and the
canonical Salpeter IMF otherwise (primarily the disk). Halo WD density
distributions and C,N/O abundance patterns are presented. While Galactic haloes
comprised of ~5% (by mass) of WDs are not supported by our simulations, mass
fractions of ~1-2% cannot be ruled out. This conclusion is consistent with the
present-day observational constraints.Comment: accepted for publication in MNRA
Mapping Substructures in Dark Matter Halos
We present a detailed study of the real and integrals-of-motion space
distributions of a satellite obtained from a self-consistent high-resolution
simulation of a galaxy cluster and re-simulated using various analytical halo
potentials. We found that the disrupted satellite appears as a coherent
structure in integrals-of-motion space in all models (``live'' and analytical
potential) although the distribution is significantly smeared for the live host
halo. Further the primary mechanism for this smearing is the mass growth of the
host, which changes both the energy and angular momentum of the satellite
debris. Hence, this must be considered when searching for (stellar) streams
with future observational experiments such as RAVE and GAIA.Comment: 5 pages, 6 figures, MNRAS accepted - minor editing without changing
the conclusions, a high-resolution version of the paper is available from
http://astronomy.swin.edu.au/~sgill/downloads/downloads.htm
Galaxy formation with radiative and chemical feedback
Here we introduce GAMESH, a novel pipeline which implements self-consistent
radiative and chemical feedback in a computational model of galaxy formation.
By combining the cosmological chemical-evolution model GAMETE with the
radiative transfer code CRASH, GAMESH can post process realistic outputs of a
N-body simulation describing the redshift evolution of the forming galaxy.
After introducing the GAMESH implementation and its features, we apply the code
to a low-resolution N-body simulation of the Milky Way formation and we
investigate the combined effects of self-consistent radiative and chemical
feedback. Many physical properties, which can be directly compared with
observations in the Galaxy and its surrounding satellites, are predicted by the
code along the merger-tree assembly. The resulting redshift evolution of the
Local Group star formation rates, reionisation and metal enrichment along with
the predicted Metallicity Distribution Function of halo stars are critically
compared with observations. We discuss the merits and limitations of the first
release of GAMESH, also opening new directions to a full implementation of
feedback processes in galaxy formation models by combining semi-analytic and
numerical methods.Comment: This version has coloured figures not present in the printed version.
Submitted to MNRAS, minor revision
Orbits of radial migrators and non-migrators around a spiral arm in N-body simulations
Recent numerical N-body simulations of spiral galaxies have shown that spiral arms in N-body simulations do not rotate rigidly as expected in classic density wave theory, but instead seem to rotate at a similar speed to the local rotation speed of the stellar disc material. This in turn yields winding, transient and recurrent spiral structure, whose co-rotating nature gives rise to changes in the angular momentum (radial migration) of star particles close to the spiral arm at many radii. From high resolution N-body simulations, we highlight the evolution of strongly migrating star particles (migrators) and star particles that do not migrate (non-migrators) around a spiral arm. We investigate the individual orbit histories of migrators and non-migrators and find that there are several types of migrator and non-migrator, each with unique radial evolution. We find the important quantities that affect the orbital evolution to be the radial and tangential velocity components in combination with the azimuthal distance to the spiral arm at the time the star particle begins to feel tangential force. We contrast each type of orbit to compare how these factors combine for migrators and non-migrators. We find that the positive (negative) migrators sustain a position behind (in front of) the spiral arm, and feel continuous tangential force as long as the spiral arm persists. This is because the positive (negative) migrators are close to the apocentre (pericentre) epicycle phase during their migration, and rotate slower (faster) than the co-rotating spiral arm. On the other hand, non-migrators stay close to the spiral arm, and pass or are passed by the spiral arm one or two times. Although they gain or lose the angular momentum when they are behind or in front of the spiral arm, their net angular momentum change becomes close to zero
Fourteen candidate RR Lyrae star streams in the inner Galaxy
We apply the GC3 stream-finding method to RR Lyrae stars (RRLSs) in the Catalina survey. We find 2 RRLS stream candidates at >4σ confidence and another 12 at >3.5σ confidence over the Galactocentric distance range 4 < D/kpc < 26. Of these, only two are associated with known globular clusters (NGC 1261 and Arp2). The remainder are candidate ‘orphan’ streams, consistent with the idea that globular cluster streams are most visible close to dissolution. Our detections are likely a lower bound on the total number of dissolving globulars in the inner galaxy, since many globulars have few RRLSs, while only the brightest streams are visible over the Galactic RRLS background, particularly given the current lack of kinematical information. We make all of our candidate streams publicly available and provide a new galstreamsPYTHON library for the footprints of all known streams and overdensities in the Milky Way
Stellar Motion around Spiral Arms: Gaia Mock Data
We compare the stellar motion around a spiral arm created in two different
scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms.
We generate Gaia mock data from snapshots of the simulations following these
two scenarios using our stellar population code, SNAPDRAGONS, which takes into
account dust extinction and the expected Gaia errors. We compare the observed
rotation velocity around a spiral arm similar in position to the Perseus arm,
and find that there is a clear difference in the velocity features around the
spiral arm between the co-rotating spiral arm and the density-wave-like spiral
arm. Our result demonstrates that the volume and accuracy of the Gaia data are
sufficient to clearly distinguish these two scenarios of the spiral arms.Comment: 5 pages, 1 figure, to appear in the proceedings of "The Milky Way
Unravelled by Gaia: GREAT Science from the Gaia Data Releases", Barcelona,
1-5 December 2014, eds. N. Walton, F. Figueras, C. Soubira
- …
