1,035 research outputs found

    Charged particle multiplicities in pp interactions at √s = 0.9, 2.36, and 7 TeV

    Get PDF
    Measurements of primary charged hadron multiplicity distributions are presented for non-single-diractive events in proton-proton collisions at centre-of-mass energies of √s = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |η| < 0.5 to |η| < 2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at √s = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with √s is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies

    Aligning the CMS muon chambers with the muon alignment system during an extended cosmic ray run

    Get PDF
    The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140–350 µm and 30–200 µrad, close to the precision requirements of the experiment. Systematic errors on absolute positions are estimated to be 340–590 µm based on comparisons with independent photogrammetry measurements

    SDN next generation integrated architecture for HEP and global science

    Get PDF
    I describe a software-defined global system under development by Caltech and partner network teams in support of the LHC and other major science programs that coordinates workflows among hundreds of multi-petabyte data stores and petascale computing facilities interlinked by 100 Gbps networks, and the Exascale systems needed by the next decade
    corecore