1,217 research outputs found
Neel to staggered dimer order transition in a generalized honeycomb lattice Heisenberg model
We study a generalized honeycomb lattice spin-1/2 Heisenberg model with
nearest-neighbor antiferromagnetic 2-spin exchange, and competing 4-spin
interactions which serve to stabilize a staggered dimer state which breaks
lattice rotational symmetry. Using a combination of quantum Monte Carlo
numerics, spin wave theory, and bond operator theory, we show that this model
undergoes a strong first-order transition between a Neel state and a staggered
dimer state upon increasing the strength of the 4-spin interactions. We
attribute the strong first order character of this transition to the spinless
nature of the core of point-like Z(3) vortices obtained in the staggered dimer
state. Unlike in the case of a columnar dimer state, disordering such vortices
in the staggered dimer state does not naturally lead to magnetic order,
suggesting that, in this model, the dimer and Neel order parameters should be
thought of as independent fields as in conventional Landau theory.Comment: 13 pages, 10 fig
Permutation-Symmetric Multicritical Points in Random Antiferromagnetic Spin Chains
The low-energy properties of a system at a critical point may have additional
symmetries not present in the microscopic Hamiltonian. This letter presents the
theory of a class of multicritical points that provide an interesting example
of this in the phase diagrams of random antiferromagnetic spin chains. One case
provides an analytic theory of the quantum critical point in the random
spin-3/2 chain, studied in recent work by Refael, Kehrein and Fisher
(cond-mat/0111295).Comment: Revtex, 4 pages (2 column format), 2 eps figure
Oscillating mushrooms: adiabatic theory for a non-ergodic system
Can elliptic islands contribute to sustained energy growth as parameters of a
Hamiltonian system slowly vary with time? In this paper we show that a mushroom
billiard with a periodically oscillating boundary accelerates the particle
inside it exponentially fast. We provide an estimate for the rate of
acceleration. Our numerical experiments confirms the theory. We suggest that a
similar mechanism applies to general systems with mixed phase space.Comment: final revisio
Seismometer Detection of Dust Devil Vortices by Ground Tilt
We report seismic signals on a desert playa caused by convective vortices and
dust devils. The long-period (10-100s) signatures, with tilts of ~10
radians, are correlated with the presence of vortices, detected with nearby
sensors as sharp temporary pressure drops (0.2-1 mbar) and solar obscuration by
dust. We show that the shape and amplitude of the signals, manifesting
primarily as horizontal accelerations, can be modeled approximately with a
simple quasi-static point-load model of the negative pressure field associated
with the vortices acting on the ground as an elastic half space. We suggest the
load imposed by a dust devil of diameter D and core pressure {\Delta}Po is
~({\pi}/2){\Delta}PoD, or for a typical terrestrial devil of 5 m diameter
and 2 mbar, about the weight of a small car. The tilt depends on the inverse
square of distance, and on the elastic properties of the ground, and the large
signals we observe are in part due to the relatively soft playa sediment and
the shallow installation of the instrument. Ground tilt may be a particularly
sensitive means of detecting dust devils. The simple point-load model fails for
large dust devils at short ranges, but more elaborate models incorporating the
work of Sorrells (1971) may explain some of the more complex features in such
cases, taking the vortex winds and ground velocity into account. We discuss
some implications for the InSight mission to Mars.Comment: Contributed Article for Bulletin of the Seismological Society of
America, Accepted 29th August 201
Expected seismicity and the seismic noise environment of Europa
Seismic data will be a vital geophysical constraint on internal structure of
Europa if we land instruments on the surface. Quantifying expected seismic
activity on Europa both in terms of large, recognizable signals and ambient
background noise is important for understanding dynamics of the moon, as well
as interpretation of potential future data. Seismic energy sources will likely
include cracking in the ice shell and turbulent motion in the oceans. We define
a range of models of seismic activity in Europa's ice shell by assuming each
model follows a Gutenberg-Richter relationship with varying parameters. A range
of cumulative seismic moment release between and Nm/yr is
defined by scaling tidal dissipation energy to tectonic events on the Earth's
moon. Random catalogs are generated and used to create synthetic continuous
noise records through numerical wave propagation in thermodynamically
self-consistent models of the interior structure of Europa. Spectral
characteristics of the noise are calculated by determining probabilistic power
spectral densities of the synthetic records. While the range of seismicity
models predicts noise levels that vary by 80 dB, we show that most noise
estimates are below the self-noise floor of high-frequency geophones, but may
be recorded by more sensitive instruments. The largest expected signals exceed
background noise by 50 dB. Noise records may allow for constraints on
interior structure through autocorrelation. Models of seismic noise generated
by pressure variations at the base of the ice shell due to turbulent motions in
the subsurface ocean may also generate observable seismic noise.Comment: 24 pages, 11 figures, Added in supplementary information from
revision submission, including 3 audio files with sonification of Europa
noise records. To view attachments, please download and extract the gzipped
tar source file listed under "Other formats
Seismic wave propagation in icy ocean worlds
Seismology was developed on Earth and shaped our model of the Earth's
interior over the 20th century. With the exception of the Philae lander, all in
situ extraterrestrial seismological effort to date was limited to other
terrestrial planets. All have in common a rigid crust above a solid mantle. The
coming years may see the installation of seismometers on Europa, Titan and
Enceladus, so it is necessary to adapt seismological concepts to the setting of
worlds with global oceans covered in ice. Here we use waveform analyses to
identify and classify wave types, developing a lexicon for icy ocean world
seismology intended to be useful to both seismologists and planetary
scientists. We use results from spectral-element simulations of broadband
seismic wavefields to adapt seismological concepts to icy ocean worlds. We
present a concise naming scheme for seismic waves and an overview of the
features of the seismic wavefield on Europa, Titan, Ganymede and Enceladus. In
close connection with geophysical interior models, we analyze simulated seismic
measurements of Europa and Titan that might be used to constrain geochemical
parameters governing the habitability of a sub-ice ocean.Comment: 47 pages, 14 figures, accepted for publication in JGR Planet
Symmetry breaking perturbations and strange attractors
The asymmetrically forced, damped Duffing oscillator is introduced as a
prototype model for analyzing the homoclinic tangle of symmetric dissipative
systems with \textit{symmetry breaking} disturbances. Even a slight fixed
asymmetry in the perturbation may cause a substantial change in the asymptotic
behavior of the system, e.g. transitions from two sided to one sided strange
attractors as the other parameters are varied. Moreover, slight asymmetries may
cause substantial asymmetries in the relative size of the basins of attraction
of the unforced nearly symmetric attracting regions. These changes seems to be
associated with homoclinic bifurcations. Numerical evidence indicates that
\textit{strange attractors} appear near curves corresponding to specific
secondary homoclinic bifurcations. These curves are found using analytical
perturbational tools
- …
