730 research outputs found
Comment on ``the Klein-Gordon Oscillator''
The different ways of description of the particle with oscillator-like
interaction are considered. The results are in conformity with the previous
paper of S. Bruce and P. Minning.Comment: LaTeX file, 5p
Unknotting the polarized vacuum of quenched QED
A knot-theoretic explanation is given for the rationality of the quenched QED
beta function. At the link level, the Ward identity entails cancellation of
subdivergences generated by one term of the skein relation, which in turn
implies cancellation of knots generated by the other term. In consequence, each
bare three-loop diagram has a rational Laurent expansion in the Landau gauge,
as is verified by explicit computation. Comparable simplification is found to
occur in scalar electrodynamics, when computed in the Duffin-Kemmer-Petiau
formalism.Comment: 11 pages, LaTe
Exact Solution of Photon Equation in Stationary G\"{o}del-type and G\"{o}del Space-Times
In this work the photon equation (massless Duffin-Kemmer-Petiau equation) is
written expilicitly for general type of stationary G\"{o}del space-times and is
solved exactly for G\"{o}del-type and G\"{o}del space-times. Harmonic
oscillator behaviour of the solutions is discussed and energy spectrum of
photon is obtained.Comment: 9 pages,RevTeX, no figure, revised for publicatio
On Equivalence of Duffin-Kemmer-Petiau and Klein-Gordon Equations
A strict proof of equivalence between Duffin-Kemmer-Petiau (DKP) and
Klein-Gordon (KG) theories is presented for physical S-matrix elements in the
case of charged scalar particles interacting in minimal way with an external or
quantized electromagnetic field. First, Hamiltonian canonical approach to DKP
theory is developed in both component and matrix form. The theory is then
quantized through the construction of the generating functional for Green
functions (GF) and the physical matrix elements of S-matrix are proved to be
relativistic invariants. The equivalence between both theories is then proved
using the connection between GF and the elements of S-matrix, including the
case of only many photons states, and for more general conditions - so called
reduction formulas of Lehmann, Symanzik, Zimmermann.Comment: 23 pages, no figures, requires macro tcilate
Anomalously interacting new extra vector bosons and their first LHC constraints
In this review phenomenological consequences of the Standard Model extension
by means of new spin-1 chiral fields with the internal quantum numbers of the
electroweak Higgs doublets are summarized. The prospects for resonance
production and detection of the chiral vector and bosons at
the LHC energies are considered. The boson can be observed as a
Breit-Wigner resonance peak in the invariant dilepton mass distributions in the
same way as the well-known extra gauge bosons. However, the bosons
have unique signatures in transverse momentum, angular and pseudorapidity
distributions of the final leptons, which allow one to distinguish them from
other heavy neutral resonances. In 2010, with 40 pb of the LHC
proton-proton data at the energy 7 TeV, the ATLAS detector was used to search
for narrow resonances in the invariant mass spectrum of and
final states and high-mass charged states decaying to a charged
lepton and a neutrino. No statistically significant excess above the Standard
Model expectation was observed. The exclusion mass limits of 1.15 TeV and
1.35 TeV were obtained for the chiral neutral and charged
bosons, respectively. These are the first direct limits on the and
boson production. For almost all currently considered exotic models the
relevant signal is expected in the central dijet rapidity region. On the
contrary, the chiral bosons do not contribute to this region but produce an
excess of dijet events far away from it. For these bosons the appropriate
kinematic restrictions lead to a dip in the centrality ratio distribution over
the dijet invariant mass instead of a bump expected in the most exotic models.Comment: 24 pages, 34 figure, based on talk given by V.A.Bednyakov at 15th
Lomonosov conference, 22.08.201
Topological gauge theories with antisymmetric tensor matter fields
A new type of topological matter interactions involving second-rank
antisymmetric tensor matter fields with an underlying topological
supersymmetry are proposed. The construction of the 4-dimensional,
Donaldson-Witten theory, the super-BF model and the
topological B-model with tensor matter are explicitly worked out.Comment: Latex, 17 pages; refinement of an argument, addition of a footnot
Boson-fermion unification, superstrings, and Bohmian mechanics
Bosonic and fermionic particle currents can be introduced in a more unified
way, with the cost of introducing a preferred spacetime foliation. Such a
unified treatment of bosons and fermions naturally emerges from an analogous
superstring current, showing that the preferred spacetime foliation appears
only at the level of effective field theory, not at the fundamental superstring
level. The existence of the preferred spacetime foliation allows an objective
definition of particles associated with quantum field theory in curved
spacetime. Such an objective definition of particles makes the Bohmian
interpretation of particle quantum mechanics more appealing. The superstring
current allows a consistent Bohmian interpretation of superstrings themselves,
including a Bohmian description of string creation and destruction in terms of
string splitting. The Bohmian equations of motion and the corresponding
probabilistic predictions are fully relativistic covariant and do not depend on
the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy
Lorentz Invariant Superluminal Tunneling
It is shown that superluminal optical signalling is possible without
violating Lorentz invariance and causality via tunneling through photonic band
gaps in inhomogeneous dielectrics of a special kind.Comment: 10 pages revtex, no figure, more discussions added, submitted to
Phys. Rev.
Field on Poincare group and quantum description of orientable objects
We propose an approach to the quantum-mechanical description of relativistic
orientable objects. It generalizes Wigner's ideas concerning the treatment of
nonrelativistic orientable objects (in particular, a nonrelativistic rotator)
with the help of two reference frames (space-fixed and body-fixed). A technical
realization of this generalization (for instance, in 3+1 dimensions) amounts to
introducing wave functions that depend on elements of the Poincare group . A
complete set of transformations that test the symmetries of an orientable
object and of the embedding space belongs to the group . All
such transformations can be studied by considering a generalized regular
representation of in the space of scalar functions on the group, ,
that depend on the Minkowski space points as well as on the
orientation variables given by the elements of a matrix .
In particular, the field is a generating function of usual spin-tensor
multicomponent fields. In the theory under consideration, there are four
different types of spinors, and an orientable object is characterized by ten
quantum numbers. We study the corresponding relativistic wave equations and
their symmetry properties.Comment: 46 page
The source ambiguity problem: Distinguishing the effects of grammar and processing on acceptability judgments
Judgments of linguistic unacceptability may theoretically arise from either grammatical deviance or significant processing difficulty. Acceptability data are thus naturally ambiguous in theories that explicitly distinguish formal and functional constraints. Here, we consider this source ambiguity problem in the context of Superiority effects: the dispreference for ordering a wh-phrase in front of a syntactically “superior” wh-phrase in multiple wh-questions, e.g., What did who buy? More specifically, we consider the acceptability contrast between such examples and so-called D-linked examples, e.g., Which toys did which parents buy? Evidence from acceptability and self-paced reading experiments demonstrates that (i) judgments and processing times for Superiority violations vary in parallel, as determined by the kind of wh-phrases they contain, (ii) judgments increase with exposure, while processing times decrease, (iii) reading times are highly predictive of acceptability judgments for the same items, and (iv) the effects of the complexity of the wh-phrases combine in both acceptability judgments and reading times. This evidence supports the conclusion that D-linking effects are likely reducible to independently motivated cognitive mechanisms whose effects emerge in a wide range of sentence contexts. This in turn suggests that Superiority effects, in general, may owe their character to differential processing difficulty
- …
