223 research outputs found

    Galactic outflows and the kinematics of damped Lyman alpha absorbers

    Get PDF
    The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodynamical simulations that include a heuristic model for galactic outflows. Without outflows, our simulations fail to yield enough wide DLAs, as in previous studies. With outflows, predicted DLA kinematics are in much better agreement with observations. Comparing two outflow models, we find that a model based on momentum-driven wind scalings provides the best match to the observed DLA kinematic statistics of Prochaska & Wolfe. In this model, DLAs typically arise a few kpc away from galaxies that would be identified in emission. Narrow DLAs can arise from any halo and galaxy mass, but wide ones only arise in halos with mass >10^11 Mo, from either large central or small satellite galaxies. This implies that the success of this outflow model originates from being most efficient at pushing gas out from small satellite galaxies living in larger halos. This increases the cross-section for large halos relative to smaller ones, thereby yielding wider kinematics. Our simulations do not include radiative transfer effects or detailed metal tracking, and outflows are modeled heuristically, but they strongly suggest that galactic outflows are central to understanding DLA kinematics. An interesting consequence is that DLA kinematics may place constraints on the nature and efficiency of gas ejection from high-z galaxies.Comment: submitted to MNRA

    Intergalactic Dust Extinction in Hydrodynamic Cosmological Simulations

    Get PDF
    Recently Menard et al. detected a subtle but systematic change in the mean color of quasars as a function of their projected separation from foreground galaxies, extending to comoving separations of ~10Mpc/h, which they interpret as a signature of reddening by intergalactic dust. We present theoretical models of this remarkable observation, using SPH cosmological simulations of a (50Mpc/h)^3 volume. Our primary model uses a simulation with galactic winds and assumes that dust traces the intergalactic metals. The predicted galaxy-dust correlation function is similar in form to the galaxy-mass correlation function, and reproducing the MSFR data requires a dust-to-metal mass ratio of 0.24, about half the value in the Galactic ISM. Roughly half of the reddening arises in dust that is more than 100Kpc/h from the nearest massive galaxy. We also examine a simulation with no galactic winds, which predicts a much smaller fraction of intergalactic metals (3% vs. 35%) and therefore requires an unphysical dust-to-metal ratio of 2.18 to reproduce the MSFR data. In both models, the signal is dominated by sightlines with E(g-i)=0.001-0.1. The no-wind simulation can be reconciled with the data if we also allow reddening to arise in galaxies up to several x 10^10 Msun. The wind model predicts a mean visual extinction of A_V ~0.0133 mag out to z=0.5, with a sightline-to-sightline dispersion similar to the mean, which could be significant for future supernova cosmology studies. Reproducing the MSFR results in these simulations requires that a large fraction of ISM dust survive its expulsion from galaxies and its residence in the intergalactic medium. Future observational studies that provide higher precision and measure the dependence on galaxy type and environment will allow detailed tests for models of enriched galactic outflows and the survival of IG dust.Comment: Matches version accepted by MNRA

    Dwarf Galaxy Mass Estimators vs. Cosmological Simulations

    Get PDF
    We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly-used mass estimators from Walker et al.(2009) and Wolf et al.(2010), both of which depend on the observed line-of-sight velocity dispersion and the 2D half-light radius of the galaxy, ReRe. The simulations are part of the the Feedback in Realistic Environments (FIRE) project and include twelve systems with stellar masses spanning 105107M10^{5} - 10^{7} M_{\odot} that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: MWolf/Mtrue=0.980.12+0.19M_{Wolf}/M_{true} = 0.98^{+0.19}_{-0.12} and MWalker/Mtrue=1.070.15+0.21M_{Walker}/M_{true} =1.07^{+0.21}_{-0.15}, with errors reflecting the 68% range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios c/a0.40.7 c/a \simeq 0.4-0.7. The accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off r4.2\propto r^{-4.2} at large rr, they are well fit by S\'ersic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is ReRe . Determining ReRe by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.Comment: Submitted to MNRAS. 11 pages, 12 figures, comments welcom

    Feedback and Recycled Wind Accretion: Assembling the z=0 Galaxy Mass Function

    Get PDF
    We analyse cosmological hydrodynamic simulations that include observationally-constrained prescriptions for galactic outflows. If these simulated winds accurately represent winds in the real Universe, then material previously ejected in winds provides the dominant source of gas infall for new star formation at redshifts z<1. This recycled wind accretion, or wind mode, provides a third physically distinct accretion channel in addition to the "hot" and "cold" modes emphasised in recent theoretical studies. Because of the interaction between outflows and gas in and around halos, the recycling timescale of wind material (t_rec) is shorter in higher-mass systems, which reside in denser gaseous environments. In these simulations, this differential recycling plays a central role in shaping the present-day galaxy stellar mass function (GSMF). If we remove all particles that were ever ejected in a wind, then the predicted GSMFs are much steeper than observed; galaxy masses are suppressed both by the direct removal of gas and by the hydrodynamic heating of their surroundings, which reduces subsequent infall. With wind recycling included, the simulation that incorporates our favoured momentum-driven wind scalings reproduces the observed GSMF for stellar masses 10^9 < M < 5x10^10 Msolar. At higher masses, wind recycling leads to excessive galaxy masses and excessive star formation rates relative to observations. In these massive systems, some quenching mechanism must suppress the re-accretion of gas ejected from star-forming galaxies. In short, as has long been anticipated, the form of the GSMF is governed by outflows; the unexpected twist here for our simulated winds is that it is not primarily the ejection of material but how the ejected material is re-accreted that governs the GSMF.Comment: 16 pages, 7 figures, accepted by MNRA

    How do dwarf galaxies acquire their mass & when do they form their stars?

    Full text link
    We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger trees, to predict when they form their stars. With the first approach, we show that the large majority of galaxies within group- and cluster-mass halos have acquired the bulk of their stellar mass through gas accretion and not via galaxy mergers. We deduce that most dwarf ellipticals are not built up by galaxy mergers. With the second approach, we constrain the star formation histories of dwarfs by requiring that star formation must occur within halos of a minimum circular velocity set by the evolution of the temperature of the IGM, starting before the epoch of reionization. We qualitatively reproduce the downsizing trend of greater ages at greater masses and predict an upsizing trend of greater ages as one proceeds to masses lower than m_crit. We find that the fraction of galaxies with very young stellar populations (more than half the mass formed within the last 1.5 Gyr) is a function of present-day mass in stars and cold gas, which peaks at 0.5% at m_crit=10^6-8 M_Sun, corresponding to blue compact dwarfs such as I Zw 18. We predict that the baryonic mass function of galaxies should not show a maximum at masses above 10^5.5, M_Sun, and we speculate on the nature of the lowest mass galaxies.Comment: 6 pages, to appear in "A Universe of Dwarf Galaxies: Observations, Theories, Simulations", ed. M. Koleva, P. Prugniel & I. Vauglin, EAS Series (Paris: EDP

    A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies: I. Galaxy Mergers & Quasar Activity

    Full text link
    (Abridged) We develop a model for the cosmological role of mergers in the evolution of starbursts, quasars, and spheroidal galaxies. Combining halo mass functions (MFs) with empirical halo occupation models, we calculate where major galaxy-galaxy mergers occur and what kinds of galaxies merge, at all redshifts. We compare with observed merger MFs, clustering, fractions, and small-scale environments, and show that this yields robust estimates in good agreement with observations. Making the simple ansatz that major, gas-rich mergers cause quasar activity, we demonstrate that this naturally reproduces the observed rise and fall of the quasar luminosity density from z=0-6, as well as quasar LFs, fractions, host galaxy colors, and clustering as a function of redshift and luminosity. The observed excess of quasar clustering on small scales is a natural prediction of the model, as mergers preferentially occur in regions with excess small-scale galaxy overdensities. We show that quasar environments at all observed redshifts correspond closely to the empirically determined small group scale, where mergers of gas-rich galaxies are most efficient. We contrast with a secular model in which quasar activity is driven by bars/disk instabilities, and show that while these modes probably dominate at Seyfert luminosities, the constraints from clustering (large and small-scale), pseudobulge populations, disk MFs, luminosity density evolution, and host galaxy colors argue that they must be a small contributor to the z>1 quasar luminosity density.Comment: 34 pages, 27 figures, submitted to ApJ. Fixed appearance of Figure

    SIDM on FIRE: Hydrodynamical Self-Interacting Dark Matter simulations of low-mass dwarf galaxies

    Get PDF
    We compare a suite of four simulated dwarf galaxies formed in 1010M^{10} M_{\odot} haloes of collisionless Cold Dark Matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for dark matter self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (FIRE) project and utilize the FIRE-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in Self-Interacting Dark Matter (SIDM) with σ/m=1cm2/g\sigma/m= 1\, cm^2/g are very similar to those in CDM (spanning M105.77.0MM_{\star} \approx 10^{5.7 - 7.0} M_{\odot}) and all runs lie on a similar stellar mass -- size relation. The logarithmic dark matter density slope (α=dlogρ/dlogr\alpha=d\log \rho / d\log r) in the central 250500250-500 pc remains steeper than α=0.8\alpha= -0.8 for the CDM-Hydro simulations with stellar mass M106.6MM_{\star} \sim 10^{6.6} M_{\odot} and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α>0.4\alpha >-0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include FIRE-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting SIDM will be easier to falsify than CDM using low-mass galaxies. Our FIRE simulations predict that galaxies less massive than M<3×106MM_{\star} < 3 \times 10^6 M_{\odot} provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.Comment: 10 Pages, 7 figures, submitted to MNRA

    Predictions for the spatial distribution of the dust continuum emission in 1 < z < 5 star-forming galaxies

    Get PDF
    We present the first detailed study of the spatially resolved dust continuum emission of simulated galaxies at 1 < z < 5. We run the radiative transfer code SKIRT on a sample of submillimetre-bright galaxies drawn from the Feedback In Realistic Environments (FIRE) project. These simulated galaxies reach Milky Way masses by z = 2. Our modelling provides predictions for the full rest-frame far-ultraviolet-to-far-infrared spectral energy distributions of these simulated galaxies, as well as 25-pc resolution maps of their emission across the wavelength spectrum. The derived morphologies are notably different in different wavebands, with the same galaxy often appearing clumpy and extended in the far-ultraviolet yet an ordered spiral at far-infrared wavelengths. The observed-frame 870-μm half-light radii of our FIRE-2 galaxies are ∼0.5−4kpc⁠, consistent with existing ALMA observations of galaxies with similarly high redshifts and stellar masses. In both simulated and observed galaxies, the dust continuum emission is generally more compact than the cold gas and the dust mass, but more extended than the stellar component. The most extreme cases of compact dust emission seem to be driven by particularly compact recent star formation, which generates steep dust temperature gradients. Our results confirm that the spatial extent of the dust continuum emission is sensitive to both the dust mass and star formation rate distributions

    A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies: II. Formation of Red Ellipticals

    Full text link
    (Abridged) We develop and test a model for the cosmological role of mergers in the formation and quenching of red, early-type galaxies. Making the ansatz that star formation is quenched after a gas-rich, spheroid-forming major merger, we demonstrate that this naturally predicts the turnover in the efficiency of star formation at ~L_star, as well as the observed mass functions/density of red galaxies as a function of redshift, the formation times of spheroids as a function of mass, and the fraction of quenched galaxies as a function of galaxy and halo mass, environment, and redshift. Comparing to a variety of semi-analytic models in which quenching is primarily driven by halo mass considerations or secular/disk instabilities, we demonstrate that our model and different broad classes of models make unique and robust qualitative predictions for a number of observables, including the red fraction as a function of galaxy and halo mass, the density of passive galaxies and evolution of the color-morphology-density relations at high z, and the fraction of disky/boxy spheroids as a function of mass. In each case, the observations favor a model in which galaxies quench after a major merger builds a massive spheroid, and disfavor quenching via secular or pure halo processes. We discuss a variety of physical possibilities for this quenching, and propose a mixed scenario in which traditional quenching in hot, massive halos is supplemented by the feedback associated with star formation and quasar activity in a major merger, which temporarily suppress cooling and establish the conditions of a dynamically hot halo in the central regions of the host, even in low mass halos.Comment: 29 pages, 21 figures, submitted to ApJ. Replacement fixes comparison of models in Figures 6 &
    corecore