17 research outputs found

    Phase Decomposition upon Alteration of Radiation-Damaged Monazite-(Ce) from Moss, Ostfold, Norway

    Get PDF
    The internal textures of crystals of moderately radiation-damaged monazite-(Ce) from Moss, Norway, indicate heavy, secondary chemical alteration. In fact, the cm-sized specimens are no longer mono-mineral monazite but rather a composite consisting of monazite-(Ce) and apatite pervaded by several generations of fractures filled with sulphides and a phase rich in Th, Y, and Si. This composite is virtually a 'pseudomorph' after primary euhedral monazite crystals whose faces are still well preserved. The chemical alteration has resulted in major reworking and decomposition of the primary crystals, with potentially uncontrolled elemental changes, including extensive release of Th from the primary monazite and local redeposition of radionuclides in fracture fillings. This seems to question the general alteration-resistance of orthophosphate phases in a low-temperature, 'wet' environment, and hence their suitability as potential host ceramics for the long-term immobilisation of radioactive waste

    Timescales of shock processes in chondritic and martian meteorites

    No full text
    International audienceThe accretion of the terrestrial planets from asteroid collisions and the delivery to the Earth of martian and lunar meteorites has been modelled extensively 1,2. Meteorites that have experienced shock waves from such collisions can potentially be used to reveal the accretion process at different stages of evolution within the Solar System. Here we have determined the peak pressure experienced and the duration of impact in a chondrite and a martian meteorite, and have combined the data with impact scaling laws to infer the sizes of the impactors and the associated craters on the meteorite parent bodies. The duration of shock events is inferred from trace element distributions between coexisting high-pressure minerals in the shear melt veins of the meteorites. The shock duration and the associated sizes of the impactor are found to be much greater in the chondrite (~1 s and 5 km, respectively) than in the martian meteorite (~10 ms and 100 m). The latter result compares well with numerical modelling studies of cratering on Mars, and we suggest that martian meteorites with similar, recent ejection ages (105 to 107 years ago) 3 may have originated from the same few square kilometres on Mars
    corecore