68 research outputs found

    Iron Furnace Problem - What is the porosity distribution in the iron ore hopper?

    Get PDF
    In the processing of iron ore, pellets are funneled into a furnace and reduced by contact with a gas. We consider the problem of determining whether significant spatial segregation occurs within the furnace based on pellet size. Experiments and computation are used to test whether such segregation may happen at the inlet or near the sides. Experimental results indicate that segregation at the inlet may occur, while segregation due to friction at the sides probably does not. The computational results provided are too crude to base conclusions on, but indicate what could be done with further resources

    Optimized explicit Runge-Kutta schemes for the spectral difference method applied to wave propagation problems

    Full text link
    Explicit Runge-Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretization on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge-Kutta schemes available in literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.Comment: 37 pages, 3 pages of appendi

    Effective order strong stability preserving Runge–Kutta methods

    Get PDF
    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of effective order methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods—like classical order five methods—require the use of non-positive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge–Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    Ill-posedness of degenerate dispersive equations

    Full text link
    In this article we provide numerical and analytical evidence that some degenerate dispersive partial differential equations are ill-posed. Specifically we study the K(2,2) equation ut=(u2)xxx+(u2)xu_t = (u^2)_{xxx} + (u^2)_{x} and the "degenerate Airy" equation ut=2uuxxxu_t = 2 u u_{xxx}. For K(2,2) our results are computational in nature: we conduct a series of numerical simulations which demonstrate that data which is very small in H2H^2 can be of unit size at a fixed time which is independent of the data's size. For the degenerate Airy equation, our results are fully rigorous: we prove the existence of a compactly supported self-similar solution which, when combined with certain scaling invariances, implies ill-posedness (also in H2H^2)

    A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws

    Full text link
    In this article we consider one-dimensional random systems of hyperbolic conservation laws. We first establish existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws which involve random initial data and random flux functions. Based on these results we present an a posteriori error analysis for a numerical approximation of the random entropy admissible solution. For the stochastic discretization, we consider a non-intrusive approach, the Stochastic Collocation method. The spatio-temporal discretization relies on the Runge--Kutta Discontinuous Galerkin method. We derive the a posteriori estimator using continuous reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. We conclude with various numerical examples investigating the scaling properties of the residuals and illustrating the efficiency of the proposed adaptive algorithm

    PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation Problems

    Get PDF
    Development of scientific software involves tradeoffs between ease of use, generality, and performance. We describe the design of a general hyperbolic PDE solver that can be operated with the convenience of MATLAB yet achieves efficiency near that of hand-coded Fortran and scales to the largest supercomputers. This is achieved by using Python for most of the code while employing automatically-wrapped Fortran kernels for computationally intensive routines, and using Python bindings to interface with a parallel computing library and other numerical packages. The software described here is PyClaw, a Python-based structured grid solver for general systems of hyperbolic PDEs \cite{pyclaw}. PyClaw provides a powerful and intuitive interface to the algorithms of the existing Fortran codes Clawpack and SharpClaw, simplifying code development and use while providing massive parallelism and scalable solvers via the PETSc library. The package is further augmented by use of PyWENO for generation of efficient high-order weighted essentially non-oscillatory reconstruction code. The simplicity, capability, and performance of this approach are demonstrated through application to example problems in shallow water flow, compressible flow and elasticity
    corecore