312 research outputs found

    New measurement paradigms

    Get PDF
    This collection of New Measurement Paradigms papers represents a snapshot of the variety of measurement methods in use at the time of writing across several projects funded by the National Science Foundation (US) through its REESE and DR K–12 programs. All of the projects are developing and testing intelligent learning environments that seek to carefully measure and promote student learning, and the purpose of this collection of papers is to describe and illustrate the use of several measurement methods employed to achieve this. The papers are deliberately short because they are designed to introduce the methods in use and not to be a textbook chapter on each method. The New Measurement Paradigms collection is designed to serve as a reference point for researchers who are working in projects that are creating e-learning environments in which there is a need to make judgments about students’ levels of knowledge and skills, or for those interested in this but who have not yet delved into these methods

    Quantitative Stain-free and Continuous Multimodal Monitoring of Wound Healing in vitro with Digital Holographic Microscopy

    Full text link
    Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM) to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF) and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing

    Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

    Full text link
    Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    Search for Fingerprints of Tetrahedral Symmetry in 156Gd^{156}Gd

    Full text link
    Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in 156Gd^{156}Gd. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in 156Gd^{156}Gd.Comment: presented by Q.T. Doan at XLII Zakopane School of Physics: Breaking Frontiers: Submicron Structures in Physics and Biology, May 2008. 5 pages, minor corrections. To be published in the proceeding

    Quasiparticle alignments and alpha-decay fine structure of Pt-175

    Get PDF
    Excited states and decay properties of 175 Pt have been investigated using the 92 Mo ( 86 Sr , 2 p n ) fusion-evaporation reaction. The JUROGAM I γ -ray spectrometer and the GREAT spectrometer were used in conjunction with the gas-filled recoil separator RITU for the measurement of the radiation at the target and focal plane positions, respectively. Two new band structures, assigned to be based on the I π = ( 7 / 2 − ) ground state in 175 Pt, have been established and the known yrast band has been extended up to I π = ( 49 / 2 + ) . Rotational properties of the excited states in 175 Pt have been investigated within the cranked shell-model formalism. The low-frequency changes in the alignments of the positive- and negative-parity bands are interpreted as a sign of proton-pair excitations in the rotating core. Furthermore, the α -decay measurements reveal a candidate for a fourth α -decay branch in 175 Pt, feeding a non-yrast state in 171 Os

    Octupole correlations in the structure of O2 bands in the N=88 nuclei150Sm Gd

    Get PDF
    Knowledge of the exact microscopic structure of the 01 + ground state and first excited 02 + state in 150Sm is required to understand the branching of double β decay to these states from 150Nd. The detailed spectroscopy of 150Sm and 152Gd has been studied using (α,xn) reactions and the γ -ray arrays AFRODITE and JUROGAM II. Consistently strong E1 transitions are observed between the excited Kπ = 02 + bands and the lowest negative parity bands in both nuclei. These results are discussed in terms of the possible permanent octupole deformation in the first excited Kπ = 02 + band and also in terms of the “tidal wave” model of Frauendorf.Web of Scienc

    Reinvestigation of the excited states in the proton emitter Lu 151 : Particle-hole excitations across the N=Z=64 subshell

    Get PDF
    The excited states of the proton emitter Lu151 were reinvestigated in a recoil-decay tagging experiment at the Accelerator Laboratory of the University of Jyväskylä (JYFL). The level scheme built on the ground state of Lu151 was updated with five new γ-ray transitions. Large-scale shell model calculations were carried out in the model space consisting of the neutron and proton orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 with the optimized monopole interaction in order to interpret the experimental level scheme of Lu151. It is found that the excitation energies of states above the 27/2- and 23/2+ isomeric levels in Lu151 can be sensitive to excitations from g7/2 and d5/2 to single-particle orbitals above N=Z=64

    Designing Playful Games and Applications to Support Science Centers Learning Activities

    Get PDF
    In recent years there has been a renewed interest on science, technology, engineering, and mathematics (STEM) education. Following this interest, science centers\u27 staff started providing technology enhanced informal STEM education experiences. The use of well-designed mobile and ubiquitous forms of technology to enrich informal STEM education activities is an essential success factor. The goal of our research is to investigate how technology applications can be better used and developed for taking full advantage of the opportunities and challenges they provide for students learning about STEM concepts. In our approach, we have conducted a series of interviews with experts from science center curating and outdoor learning activities development, with the final goal of exploring and improving current learning environments and practices. This paper presents the development of set of design considerations for the development of STEM games and applications of young students. An initial set of best practices was first developed through semi-structures interviews with experts; and afterwards, by employing content analysis, a revised set of considerations was obtained. These results are useful for STEM education teachers, curriculum designers, curators and developers for K-12 education environments
    corecore