1,921 research outputs found
The electromagnetic field near a dielectric half-space
We compute the expectations of the squares of the electric and magnetic
fields in the vacuum region outside a half-space filled with a uniform
non-dispersive dielectric. This gives predictions for the Casimir-Polder force
on an atom in the `retarded' regime near a dielectric. We also find a positive
energy density due to the electromagnetic field. This would lead, in the case
of two parallel dielectric half-spaces, to a positive, separation-independent
contribution to the energy density, besides the negative, separation-dependent
Casimir energy. Rough estimates suggest that for a very wide range of cases,
perhaps including all realizable ones, the total energy density between the
half-spaces is positive.Comment: Latex2e, IOP macros, 15 pages, 2 eps figure
Electromagnetic field quantization in a linear polarizable and magnetizable medium
By modeling a linear polarizable and magnetizable medium (magneto-dielectric)
with two quantum fields, namely E and M, electromagnetic field is quantized in
such a medium consistently and systematically. A Hamiltonian is proposed from
which, using the Heisenberg equations, Maxwell and constitutive equations of
the medium are obtained. For a homogeneous medium, the equation of motion of
the quantum vector potential, , is derived and solved analytically.
Two coupling functions which describe the electromagnetic properties of the
medium are introduced. Four examples are considered showing the features and
the applicability of the model to both absorptive and nonabsorptive
magneto-dielectrics.Comment: 23 pages, Accepted for publication in Phy.Rev
Photon tunneling through absorbing dielectric barriers
Using a recently developed formalism of quantization of radiation in the
presence of absorbing dielectric bodies, the problem of photon tunneling
through absorbing barriers is studied. The multilayer barriers are described in
terms of multistep complex permittivities in the frequency domain which satisfy
the Kramers--Kronig relations. From the resulting input--output relations it is
shown that losses in the layers may considerably change the photon tunneling
times observed in two-photon interference experiments. It is further shown that
for sufficiently large numbers of layers interference fringes are observed that
cannot be related to a single traversal time.Comment: 17 pages LaTeX, 9 figures (PS) include
The cosmological implications of a fundamental length: a DSR inspired de-Sitter spacetime
We study a de-Sitter model in the framework of a Deformed Special Relativity
(DSR) inspired structure. The effects of this framework appear as the existence
of a fundamental length which influences the behavior of the scale factor. We
show that such a deformation can either be used to control the unbounded growth
of the scale factor in the present accelerating phase or account for the
inflationary era in the early evolution of the universe.Comment: 10 pages, 3 figures, to appear in JCA
Association of interleukin-1 gene cluster polymorphisms and haplotypes with multiple sclerosis in an Iranian population
Multiple sclerosis (MS) is a multi-factorial autoimmune disease of the central nervous system. The exact etiology of MS is still unknown. Due to the important roles that cytokines play as mediators in immune and inflammatory responses, we have evaluated the association of IL-1 gene cluster polymorphisms and haplotypes with MS susceptibility in 306 unrelated MS patients and 312 healthy matched controls. A significant association was found for the IL-1β + 3953 T allele [OR = 1.43, 95% CI (1.14-1.79), P value = 0.002, Pc= 0.01] and for IL-1β + 3953 T/T genotype and MS risk [OR = 1.92, 95% CI (1.25-2.96), P value = 0.005, Pc= 0.01]. Interestingly, the genotypes of the polymorphisms remained significant under recessive, co-recessive and dominant models. However, no significant differences were found between MS patients and controls in the genotype and allele frequencies of the IL-1β - 511, - 31 and IL-1Ra polymorphisms. Haplotype analysis for IL-1β - 31 and IL-1β - 511, with moderate linkage disequilibrium (LD), using the EM algorithm revealed a significant global association of haplotype differences between the two groups. Lower presence of two haplotypes (H3: C-T and H4: T-C) was observed in the MS patients than healthy controls. However, after applying Bonferroni's correction the differences were not significant. To our knowledge, this is the first study reporting the association of the IL-1β + 3953 gene polymorphism and MS susceptibility. © 2015 Elsevier B.V
Alternative approach to electromagnetic field quantization in nonlinear and inhomogeneous media
A simple approach is proposed for the quantization of the electromagnetic
field in nonlinear and inhomogeneous media. Given the dielectric function and
nonlinear susceptibilities, the Hamiltonian of the electromagnetic field is
determined completely by this quantization method. From Heisenberg's equations
we derive Maxwell's equations for the field operators. When the nonlinearity
goes to zero, this quantization method returns to the generalized canonical
quantization procedure for linear inhomogeneous media [Phys. Rev. A, 43, 467,
1991]. The explicit Hamiltonians for the second-order and third-order nonlinear
quasi-steady-state processes are obtained based on this quantization procedure.Comment: Corrections in references and introductio
Local Features with Large Spiky non-Gaussianities during Inflation
We provide a dynamical mechanism to generate localized features during
inflation. The local feature is due to a sharp waterfall phase transition which
is coupled to the inflaton field. The key effect is the contributions of
waterfall quantum fluctuations which induce a sharp peak on the curvature
perturbation which can be as large as the background curvature perturbation
from inflaton field. Due to non-Gaussian nature of waterfall quantum
fluctuations a large spike non-Gaussianity is produced which is narrowly peaked
at modes which leave the Hubble radius at the time of phase transition. The
large localized peaks in power spectrum and bispectrum can have interesting
consequences on CMB anisotropies.Comment: 22 pages, 2 figure
A multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics
The dynamics of a collection of resonant atoms embedded inside an
inhomogeneous nondispersive and lossless dielectric is described with a dipole
Hamiltonian that is based on a canonical quantization theory. The dielectric is
described macroscopically by a position-dependent dielectric function and the
atoms as microscopic harmonic oscillators. We identify and discuss the role of
several types of Green tensors that describe the spatio-temporal propagation of
field operators. After integrating out the atomic degrees of freedom, a
multiple-scattering formalism emerges in which an exact Lippmann-Schwinger
equation for the electric field operator plays a central role. The equation
describes atoms as point sources and point scatterers for light. First,
single-atom properties are calculated such as position-dependent
spontaneous-emission rates as well as differential cross sections for elastic
scattering and for resonance fluorescence. Secondly, multi-atom processes are
studied. It is shown that the medium modifies both the resonant and the static
parts of the dipole-dipole interactions. These interatomic interactions may
cause the atoms to scatter and emit light cooperatively. Unlike in free space,
differences in position-dependent emission rates and radiative line shifts
influence cooperative decay in the dielectric. As a generic example, it is
shown that near a partially reflecting plane there is a sharp transition from
two-atom superradiance to single-atom emission as the atomic positions are
varied.Comment: 18 pages, 4 figures, to appear in Physical Review
- …
