6,257 research outputs found

    Hawking radiation from decoherence

    Get PDF
    It is argued that the thermal nature of Hawking radiation arises solely due to decoherence. Thereby any information-loss paradox is avoided because for closed systems pure states remain pure. The discussion is performed for a massless scalar field in the background of a Schwarzschild black hole, but the arguments should hold in general. The result is also compared to and contrasted with the situation in inflationary cosmology.Comment: 6 pages, to appear in Class. Quantum Gra

    Quantum Gravity Equation In Schroedinger Form In Minisuperspace Description

    Get PDF
    We start from classical Hamiltonian constraint of general relativity to obtain the Einstein-Hamiltonian-Jacobi equation. We obtain a time parameter prescription demanding that geometry itself determines the time, not the matter field, such that the time so defined being equivalent to the time that enters into the Schroedinger equation. Without any reference to the Wheeler-DeWitt equation and without invoking the expansion of exponent in WKB wavefunction in powers of Planck mass, we obtain an equation for quantum gravity in Schroedinger form containing time. We restrict ourselves to a minisuperspace description. Unlike matter field equation our equation is equivalent to the Wheeler-DeWitt equation in the sense that our solutions reproduce also the wavefunction of the Wheeler-DeWitt equation provided one evaluates the normalization constant according to the wormhole dominance proposal recently proposed by us.Comment: 11 Pages, ReVTeX, no figur

    Classical and quantum LTB model for the non-marginal case

    Full text link
    We extend the classical and quantum treatment of the Lemaitre-Tolman-Bondi (LTB) model to the non-marginal case (defined by the fact that the shells of the dust cloud start with a non-vanishing velocity at infinity). We present the classical canonical formalism and address with particular care the boundary terms in the action. We give the general relation between dust time and Killing time. Employing a lattice regularization, we then derive and discuss for particular factor orderings exact solutions to all quantum constraints.Comment: 23 pages, no figures, typos correcte

    Symmetries, superselection rules, and decoherence

    Get PDF
    We discuss the applicability of the programme of decoherence -- emergence of approximate classical behaviour through interaction with the environment -- to cases where it was suggested that the presence of symmetries would lead to exact superselection rules. For this discussion it is useful to make a distinction between pure symmetries and redundancies, which results from an investigation into the constraint equations of the corresponding theories. We discuss, in particular, superpositions of states with different charges, as well as with different masses, and suggest how the corresponding interference terms, although they exist in principle, become inaccessible through decoherence.Comment: 12 pages, LATEX, Report Freiburg THEP-94/3

    Consistency of Semiclassical Gravity

    Get PDF
    We discuss some subtleties which arise in the semiclassical approximation to quantum gravity. We show that integrability conditions prevent the existence of Tomonaga-Schwinger time functions on the space of three-metrics but admit them on superspace. The concept of semiclassical time is carefully examined. We point out that central charges in the matter sector spoil the consistency of the semiclassical approximation unless the full quantum theory of gravity and matter is anomaly-free. We finally discuss consequences of these considerations for quantum field theory in flat spacetime, but with arbitrary foliations.Comment: 12 pages, LATEX, Report Freiburg THEP-94/2

    The Coherence of Primordial Fluctuations Produced During Inflation

    Full text link
    The behaviour of quantum metric perturbations produced during inflation is considered at the stage after the second Hubble radius crossing. It is shown that the classical correlation between amplitude and momentum of a perturbation mode, previously shown to emerge in the course of an effective quantum-to-classical transition, is maintained for a sufficiently long time, and we present the explicit form in which it takes place using the Wigner function. We further show with a simple diffraction experiment that quantum interference, non-expressible in terms of a classical stochastic description of the perturbations, is essentially suppressed. Rescattering of the perturbations leads to a comparatively slow decay of this correlation and to a complete stochastization of the system.Comment: LaTeX (7 pages

    Emergent charge ordering in near half doped Na0.46_{0.46}CoO2_{2}

    Full text link
    We have utilized neutron powder diffraction to probe the crystal structure of layered Nax_{x}CoO2_{2} near the half doping composition of x=x=0.46 over the temperature range of 2 to 600K. Our measurements show evidence of a dynamic transition in the motion of Na-ions at 300K which coincides with the onset of a near zero thermal expansion in the in-plane lattice constants. The effect of the Na-ordering on the CoO2_{2} layer is reflected in the octahedral distortion of the two crystallographically inequivalent Co-sites and is evident even at high temperatures. We find evidence of a weak charge separation into stripes of Co+3.5+ϵ^{+3.5+\epsilon} and Co+3.5ϵ^{+3.5-\epsilon}, ϵ0.06e\epsilon\sim0.06e below \Tco=150K. We argue that changes in the Na(1)-O bond lengths observed at the magnetic transition at \tm=88K reflect changes in the electronic state of the CoO2_{2} layerComment: 7 pages, 6 figures, in press Phys. Rev.

    Crogenic alloy screening Interim report

    Get PDF
    Evaluation of mechanical properties and fracture strength of aluminum alloys and stainless stee

    Quantum cosmology with big-brake singularity

    Full text link
    We investigate a cosmological model with a big-brake singularity in the future: while the first time derivative of the scale factor goes to zero, its second time derivative tends to minus infinity. Although we also discuss the classical version of the model in some detail, our main interest lies in its quantization. We formulate the Wheeler-DeWitt equation and derive solutions describing wave packets. We show that all such solutions vanish in the region of the classical singularity, a behaviour which we interpret as singularity avoidance. We then discuss the same situation in loop quantum cosmology. While this leads to a different factor ordering, the singularity is there avoided, too.Comment: 24 pages, 7 figures, figures improved, references added, conceptual clarifications include
    corecore