3,489 research outputs found
Moments of nonclassicality quasiprobabilities
A method is introduced for the verification of nonclassicality in terms of
moments of nonclassicality quasiprobability distributions. The latter are
easily obtained from experimental data and will be denoted as nonclassicality
moments. Their relation to normally-ordered moments is derived, which enables
us to verify nonclassicality by using well established criteria. Alternatively,
nonclassicality criteria are directly formulated in terms of nonclassicality
moments. The latter converge in proper limits to the usually used criteria, as
is illustrated for squeezing and sub-Poissonian photon statistics. Our theory
also yields expectation values of any observable in terms of nonclassicality
moments.Comment: 6 pages, 3 figure
Single-photon optomechanics in the strong coupling regime
We give a theoretical description of a coherently driven opto-mechanical
system with a single added photon. The photon source is modeled as a cavity
which initially contains one photon and which is irreversibly coupled to the
opto-mechanical system. We show that the probability for the additional photon
to be emitted by the opto-mechanical cavity will exhibit oscillations under a
Lorentzian envelope, when the driven interaction with the mechanical resonator
is strong enough. Our scheme provides a feasible route towards quantum state
transfer between optical photons and micromechanical resonators.Comment: 14 pages, 6 figure
Photonic entanglement as a resource in quantum computation and quantum communication
Entanglement is an essential resource in current experimental implementations
for quantum information processing. We review a class of experiments exploiting
photonic entanglement, ranging from one-way quantum computing over quantum
communication complexity to long-distance quantum communication. We then
propose a set of feasible experiments that will underline the advantages of
photonic entanglement for quantum information processing.Comment: 33 pages, 4 figures, OSA styl
Cosmological Neutrino Entanglement and Quantum Pressure
Context: The widespread view that cosmological neutrinos, even if massive,
are well described since the decoupling redshift z~10^10 down to the present
epoch by an almost perfectly collisionless fluid of classical point particles
is re-examined. Aims: In view of the likely sub-eV rest mass of neutrinos, the
main effects due to their fermionic nature are studied. Methods: By numerical
means we calculate the accurate entropy, fugacity and pressure of cosmological
neutrinos in the Universe expansion. By solving the Schroedinger equation we
derive how and how fast semi-degenerate identical free fermions become
entangled. Results: We find that for sub-eV neutrinos the exchange degeneracy
has significantly increased during the relativistic to non-relativistic
transition epoch at z~10^4-10^5. At all times neutrinos become entangled in
less than 10^-6 s, much faster than any plausible decoherence time. The total
pressure is increased by quantum effect from 5% at high redshifts to 68% at low
redshifts with respect to a collisionless classical fluid. Conclusions: The
quantum overpressure has no dynamical consequences in the homogeneous regime at
high redshifts, but must be significant for neutrino clustering during the
non-linear structure formation epoch at low redshifts.Comment: 11 pages, 7 figures, accepted version to Astronomy & Astrophysics (no
change, correct wrong TeX rendering
Femtosecond differential transmission measurements on low temperature GaAs metal-semiconductor-metal structures
Optically Levitating Dielectrics in the Quantum Regime: Theory and Protocols
We provide a general quantum theory to describe the coupling of light with
the motion of a dielectric object inside a high finesse optical cavity. In
particular, we derive the total Hamiltonian of the system as well as a master
equation describing the state of the center of mass mode of the dielectric and
the cavity field mode. In addition, a quantum theory of elasticity is used in
order to study the coupling of the center of mass motion with internal
vibrational excitations of the dielectric. This general theory is applied to
the recent proposal of using an optically levitating nanodielectric as a cavity
optomechanical system [Romero-Isart et al. NJP 12, 033015 (2010), Chang et al.
PNAS 107, 1005 (2010)]. On this basis, we also design a light-mechanics
interface to prepare non-Gaussian states of the mechanical motion, such as
quantum superpositions of Fock states. Finally, we introduce a direct
mechanical tomography scheme to probe these genuine quantum states by time of
flight experiments.Comment: 27 pages, revtex 2 columns, 8 figure
Experimental measurement-based quantum computing beyond the cluster-state model
The paradigm of measurement-based quantum computation opens new experimental
avenues to realize a quantum computer and deepens our understanding of quantum
physics. Measurement-based quantum computation starts from a highly entangled
universal resource state. For years, clusters states have been the only known
universal resources. Surprisingly, a novel framework namely quantum computation
in correlation space has opened new routes to implement measurement-based
quantum computation based on quantum states possessing entanglement properties
different from cluster states. Here we report an experimental demonstration of
every building block of such a model. With a four-qubit and a six-qubit state
as distinct from cluster states, we have realized a universal set of
single-qubit rotations, two-qubit entangling gates and further Deutsch's
algorithm. Besides being of fundamental interest, our experiment proves
in-principle the feasibility of universal measurement-based quantum computation
without using cluster states, which represents a new approach towards the
realization of a quantum computer.Comment: 26 pages, final version, comments welcom
A Novel Clustering Algorithm Based on Quantum Games
Enormous successes have been made by quantum algorithms during the last
decade. In this paper, we combine the quantum game with the problem of data
clustering, and then develop a quantum-game-based clustering algorithm, in
which data points in a dataset are considered as players who can make decisions
and implement quantum strategies in quantum games. After each round of a
quantum game, each player's expected payoff is calculated. Later, he uses a
link-removing-and-rewiring (LRR) function to change his neighbors and adjust
the strength of links connecting to them in order to maximize his payoff.
Further, algorithms are discussed and analyzed in two cases of strategies, two
payoff matrixes and two LRR functions. Consequently, the simulation results
have demonstrated that data points in datasets are clustered reasonably and
efficiently, and the clustering algorithms have fast rates of convergence.
Moreover, the comparison with other algorithms also provides an indication of
the effectiveness of the proposed approach.Comment: 19 pages, 5 figures, 5 table
On-demand semiconductor single-photon source with near-unity indistinguishability
Single photon sources based on semiconductor quantum dots offer distinct
advantages for quantum information, including a scalable solid-state platform,
ultrabrightness, and interconnectivity with matter qubits. A key prerequisite
for their use in optical quantum computing and solid-state networks is a high
level of efficiency and indistinguishability. Pulsed resonance fluorescence
(RF) has been anticipated as the optimum condition for the deterministic
generation of high-quality photons with vanishing effects of dephasing. Here,
we generate pulsed RF single photons on demand from a single,
microcavity-embedded quantum dot under s-shell excitation with 3-ps laser
pulses. The pi-pulse excited RF photons have less than 0.3% background
contributions and a vanishing two-photon emission probability.
Non-postselective Hong-Ou-Mandel interference between two successively emitted
photons is observed with a visibility of 0.97(2), comparable to trapped atoms
and ions. Two single photons are further used to implement a high-fidelity
quantum controlled-NOT gate.Comment: 11 pages, 11 figure
An introduction to Graph Data Management
A graph database is a database where the data structures for the schema
and/or instances are modeled as a (labeled)(directed) graph or generalizations
of it, and where querying is expressed by graph-oriented operations and type
constructors. In this article we present the basic notions of graph databases,
give an historical overview of its main development, and study the main current
systems that implement them
- …
