2,204 research outputs found

    Long term ordering kinetics of the two dimensional q-state Potts model

    Full text link
    We studied the non-equilibrium dynamics of the q-state Potts model in the square lattice, after a quench to sub-critical temperatures. By means of a continuous time Monte Carlo algorithm (non-conserved order parameter dynamics) we analyzed the long term behavior of the energy and relaxation time for a wide range of quench temperatures and system sizes. For q>4 we found the existence of different dynamical regimes, according to quench temperature range. At low (but finite) temperatures and very long times the Lifshitz-Allen-Cahn domain growth behavior is interrupted with finite probability when the system stuck in highly symmetric non-equilibrium metastable states, which induce activation in the domain growth, in agreement with early predictions of Lifshitz [JETP 42, 1354 (1962)]. Moreover, if the temperature is very low, the system always gets stuck at short times in a highly disordered metastable states with finite life time, which have been recently identified as glassy states. The finite size scaling properties of the different relaxation times involved, as well as their temperature dependency are analyzed in detail.Comment: 10 pages, 17 figure

    Internal Energy of the Potts model on the Triangular Lattice with Two- and Three-body Interactions

    Full text link
    We calculate the internal energy of the Potts model on the triangular lattice with two- and three-body interactions at the transition point satisfying certain conditions for coupling constants. The method is a duality transformation. Therefore we have to make assumptions on uniqueness of the transition point and that the transition is of second order. These assumptions have been verified to hold by numerical simulations for q=2, 3 and 4, and our results for the internal energy are expected to be exact in these cases.Comment: 9 pages, 4 figure

    Hard-wall Potential Function for Transport Properties of Alkali Metals Vapor

    Full text link
    This study demonstrates that the transport properties of alkali metals are determined principally by the repulsive wall of the pair interaction potential function. The (hard-wall) Lennard-Jones(15-6) effective pair potential function is used to calculate transport collision integrals. Accordingly, reduced collision integrals of K, Rb, and Cs metal vapors are obtained from Chapman-Enskog solution of the Boltzman equation. The law of corresponding states based on the experimental-transport reduced collision integral is used to verify the validity of a LJ(15-6) hybrid potential in describing the transport properties. LJ(8.5-4) potential function and a simple thermodynamic argument with the input PVT data of liquid metals provide the required molecular potential parameters. Values of the predicted viscosity of monatomic alkali metals vapor are in agreement with typical experimental data with the average absolute deviation 2.97% for K in the range 700-1500 K, 1.69% for Rb, and 1.75% for Cs in the range 700-2000 K. In the same way, the values of predicted thermal conductivity are in agreement with experiment within 2.78%, 3.25%, and 3.63% for K, Rb, and Cs, respectively. The LJ(15-6) hybrid potential with a hard-wall repulsion character conclusively predicts best transport properties of the three alkali metals vapor.Comment: 21 pages, 5 figures, 41 reference

    Non-existence of stationary two-black-hole configurations

    Get PDF
    We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue (GeRG journal

    Three-dimensional antiferromagnetic q-state Potts models: application of the Wang-Landau algorithm

    Full text link
    We apply a newly proposed Monte Carlo method, the Wang-Landau algorithm, to the study of the three-dimensional antiferromagnetic q-state Potts models on a simple cubic lattice. We systematically study the phase transition of the models with q=3, 4, 5 and 6. We obtain the finite-temperature phase transition for q= 3 and 4, whereas the transition temperature is down to zero for q=5. For q=6 there exists no order for all the temperatures. We also study the ground-state properties. The size-dependence of the ground-state entropy is investigated. We find that the ground-state entropy is larger than the contribution from the typical configurations of the broken-sublattice-symmetry state for q=3. The same situations are found for q = 4, 5 and 6.Comment: 9 pages including 9 eps figures, RevTeX, to appear in J. Phys.

    Transmission of Information in Active Networks

    Full text link
    Shannon's Capacity Theorem is the main concept behind the Theory of Communication. It says that if the amount of information contained in a signal is smaller than the channel capacity of a physical media of communication, it can be transmitted with arbitrarily small probability of error. This theorem is usually applicable to ideal channels of communication in which the information to be transmitted does not alter the passive characteristics of the channel that basically tries to reproduce the source of information. For an {\it active channel}, a network formed by elements that are dynamical systems (such as neurons, chaotic or periodic oscillators), it is unclear if such theorem is applicable, once an active channel can adapt to the input of a signal, altering its capacity. To shed light into this matter, we show, among other results, how to calculate the information capacity of an active channel of communication. Then, we show that the {\it channel capacity} depends on whether the active channel is self-excitable or not and that, contrary to a current belief, desynchronization can provide an environment in which large amounts of information can be transmitted in a channel that is self-excitable. An interesting case of a self-excitable active channel is a network of electrically connected Hindmarsh-Rose chaotic neurons.Comment: 15 pages, 5 figures. submitted for publication. to appear in Phys. Rev.

    Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

    Get PDF
    The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance

    Semiclassical strings in Sasaki-Einstein manifolds and long operators in N=1 gauge theories

    Full text link
    We study the AdS/CFT relation between an infinite class of 5-d Ypq Sasaki-Einstein metrics and the corresponding quiver theories. The long BPS operators of the field theories are matched to massless geodesics in the geometries, providing a test of AdS/CFT for these cases. Certain small fluctuations (in the BMN sense) can also be successfully compared. We then go further and find, using an appropriate limit, a reduced action, first order in time derivatives, which describes strings with large R-charge. In the field theory we consider holomorphic operators with large winding numbers around the quiver and find, interestingly, that, after certain simplifying assumptions, they can be described effectively as strings moving in a particular metric. Although not equal, the metric is similar to the one in the bulk. We find it encouraging that a string picture emerges directly from the field theory and discuss possible ways to improve the agreement.Comment: 44 pages, LaTeX, 9 figures. v2: References adde

    Two Kerr black holes with axisymmetric spins: An improved Newtonian model for the head-on collision and gravitational radiation

    Get PDF
    We present a semi-analytical approach to the interaction of two (originally) Kerr black holes through a head-on collision process. An expression for the rate of emission of gravitational radiation is derived from an exact solution to the Einstein's field equations. The total amount of gravitational radiation emitted in the process is calculated and compared to current numerical investigations. We find that the spin-spin interaction increases the emission of gravitational wave energy up to 0.2% of the total rest mass. We discuss also the possibility of spin-exchange between the holes.Comment: 8 pages, RevTeX, 2 figures, psbox macro include
    corecore