2,204 research outputs found
Long term ordering kinetics of the two dimensional q-state Potts model
We studied the non-equilibrium dynamics of the q-state Potts model in the
square lattice, after a quench to sub-critical temperatures. By means of a
continuous time Monte Carlo algorithm (non-conserved order parameter dynamics)
we analyzed the long term behavior of the energy and relaxation time for a wide
range of quench temperatures and system sizes. For q>4 we found the existence
of different dynamical regimes, according to quench temperature range. At low
(but finite) temperatures and very long times the Lifshitz-Allen-Cahn domain
growth behavior is interrupted with finite probability when the system stuck in
highly symmetric non-equilibrium metastable states, which induce activation in
the domain growth, in agreement with early predictions of Lifshitz [JETP 42,
1354 (1962)]. Moreover, if the temperature is very low, the system always gets
stuck at short times in a highly disordered metastable states with finite life
time, which have been recently identified as glassy states. The finite size
scaling properties of the different relaxation times involved, as well as their
temperature dependency are analyzed in detail.Comment: 10 pages, 17 figure
Internal Energy of the Potts model on the Triangular Lattice with Two- and Three-body Interactions
We calculate the internal energy of the Potts model on the triangular lattice
with two- and three-body interactions at the transition point satisfying
certain conditions for coupling constants. The method is a duality
transformation. Therefore we have to make assumptions on uniqueness of the
transition point and that the transition is of second order. These assumptions
have been verified to hold by numerical simulations for q=2, 3 and 4, and our
results for the internal energy are expected to be exact in these cases.Comment: 9 pages, 4 figure
Hard-wall Potential Function for Transport Properties of Alkali Metals Vapor
This study demonstrates that the transport properties of alkali metals are
determined principally by the repulsive wall of the pair interaction potential
function. The (hard-wall) Lennard-Jones(15-6) effective pair potential function
is used to calculate transport collision integrals. Accordingly, reduced
collision integrals of K, Rb, and Cs metal vapors are obtained from
Chapman-Enskog solution of the Boltzman equation. The law of corresponding
states based on the experimental-transport reduced collision integral is used
to verify the validity of a LJ(15-6) hybrid potential in describing the
transport properties. LJ(8.5-4) potential function and a simple thermodynamic
argument with the input PVT data of liquid metals provide the required
molecular potential parameters. Values of the predicted viscosity of monatomic
alkali metals vapor are in agreement with typical experimental data with the
average absolute deviation 2.97% for K in the range 700-1500 K, 1.69% for Rb,
and 1.75% for Cs in the range 700-2000 K. In the same way, the values of
predicted thermal conductivity are in agreement with experiment within 2.78%,
3.25%, and 3.63% for K, Rb, and Cs, respectively. The LJ(15-6) hybrid potential
with a hard-wall repulsion character conclusively predicts best transport
properties of the three alkali metals vapor.Comment: 21 pages, 5 figures, 41 reference
Non-existence of stationary two-black-hole configurations
We resume former discussions of the question, whether the spin-spin repulsion
and the gravitational attraction of two aligned black holes can balance each
other. To answer the question we formulate a boundary value problem for two
separate (Killing-) horizons and apply the inverse (scattering) method to solve
it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black
hole criterion, we prove the non-existence of the equilibrium situation in
question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue
(GeRG journal
Three-dimensional antiferromagnetic q-state Potts models: application of the Wang-Landau algorithm
We apply a newly proposed Monte Carlo method, the Wang-Landau algorithm, to
the study of the three-dimensional antiferromagnetic q-state Potts models on a
simple cubic lattice. We systematically study the phase transition of the
models with q=3, 4, 5 and 6. We obtain the finite-temperature phase transition
for q= 3 and 4, whereas the transition temperature is down to zero for q=5. For
q=6 there exists no order for all the temperatures. We also study the
ground-state properties. The size-dependence of the ground-state entropy is
investigated. We find that the ground-state entropy is larger than the
contribution from the typical configurations of the broken-sublattice-symmetry
state for q=3. The same situations are found for q = 4, 5 and 6.Comment: 9 pages including 9 eps figures, RevTeX, to appear in J. Phys.
Transmission of Information in Active Networks
Shannon's Capacity Theorem is the main concept behind the Theory of
Communication. It says that if the amount of information contained in a signal
is smaller than the channel capacity of a physical media of communication, it
can be transmitted with arbitrarily small probability of error. This theorem is
usually applicable to ideal channels of communication in which the information
to be transmitted does not alter the passive characteristics of the channel
that basically tries to reproduce the source of information. For an {\it active
channel}, a network formed by elements that are dynamical systems (such as
neurons, chaotic or periodic oscillators), it is unclear if such theorem is
applicable, once an active channel can adapt to the input of a signal, altering
its capacity. To shed light into this matter, we show, among other results, how
to calculate the information capacity of an active channel of communication.
Then, we show that the {\it channel capacity} depends on whether the active
channel is self-excitable or not and that, contrary to a current belief,
desynchronization can provide an environment in which large amounts of
information can be transmitted in a channel that is self-excitable. An
interesting case of a self-excitable active channel is a network of
electrically connected Hindmarsh-Rose chaotic neurons.Comment: 15 pages, 5 figures. submitted for publication. to appear in Phys.
Rev.
Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance
Semiclassical strings in Sasaki-Einstein manifolds and long operators in N=1 gauge theories
We study the AdS/CFT relation between an infinite class of 5-d Ypq
Sasaki-Einstein metrics and the corresponding quiver theories. The long BPS
operators of the field theories are matched to massless geodesics in the
geometries, providing a test of AdS/CFT for these cases. Certain small
fluctuations (in the BMN sense) can also be successfully compared. We then go
further and find, using an appropriate limit, a reduced action, first order in
time derivatives, which describes strings with large R-charge. In the field
theory we consider holomorphic operators with large winding numbers around the
quiver and find, interestingly, that, after certain simplifying assumptions,
they can be described effectively as strings moving in a particular metric.
Although not equal, the metric is similar to the one in the bulk. We find it
encouraging that a string picture emerges directly from the field theory and
discuss possible ways to improve the agreement.Comment: 44 pages, LaTeX, 9 figures. v2: References adde
Two Kerr black holes with axisymmetric spins: An improved Newtonian model for the head-on collision and gravitational radiation
We present a semi-analytical approach to the interaction of two (originally)
Kerr black holes through a head-on collision process. An expression for the
rate of emission of gravitational radiation is derived from an exact solution
to the Einstein's field equations. The total amount of gravitational radiation
emitted in the process is calculated and compared to current numerical
investigations. We find that the spin-spin interaction increases the emission
of gravitational wave energy up to 0.2% of the total rest mass. We discuss also
the possibility of spin-exchange between the holes.Comment: 8 pages, RevTeX, 2 figures, psbox macro include
- …
