1,508 research outputs found

    Biodiversity of living, non marine, thrombolites of Lake Clifton, Western Australia

    Get PDF
    <p>Lake Clifton in Western Australia is recognized as a critically endangered ecosystem and the only thrombolite reef in the southern hemisphere. There have been concerns that increases in salinity and nutrient run-off have significantly impacted upon the thrombolite microbial community. Here we used cultivation-independent molecular approaches to characterize the microbial diversity of the thrombolites at Lake Clifton. The most dominant phyla currently represented are the Proteobacteria with significant populations of Bacteroidetes and Firmicutes. Cyanobacteria, previously invoked as the main drivers of thrombolite growth, represent only a small fraction (∼1–3% relative abundance) of the microbial community. We report an increase in salinity and nitrogen levels at Lake Clifton that may be contributing to a change in dominant microbial populations. This heightens concerns about the long-term health of the Lake Clifton thrombolites; future work is needed to determine if phyla now dominating this system are capable of the required mineral precipitation for continued thrombolite growth.</p

    Probing elastic and inelastic breakup contributions to intermediate-energy two-proton removal reactions

    Get PDF
    The two-proton removal reaction from 28Mg projectiles has been studied at 93 MeV/u at the NSCL. First coincidence measurements of the heavy 26Ne projectile residues, the removed protons and other light charged particles enabled the relative cross sections from each of the three possible elastic and inelastic proton removal mechanisms to be determined. These more final-state-exclusive measurements are key for further interrogation of these reaction mechanisms and use of the reaction channel for quantitative spectroscopy of very neutron-rich nuclei. The relative and absolute yields of the three contributing mechanisms are compared to reaction model expectations - based on the use of eikonal dynamics and sd-shell-model structure amplitudes.Comment: Accepted for publication in Physical Review C (Rapid Communication

    Elastic breakup cross sections of well-bound nucleons

    Get PDF
    The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.Comment: Phys. Rev. C 2014 (accepted

    Angular Dependence in Proton-Proton Correlation Functions in Central 40Ca+40Ca^{40}Ca+^{40}Ca and 48Ca+48Ca^{48}Ca+^{48}Ca Reactions

    Full text link
    The angular dependence of proton-proton correlation functions is studied in central 40Ca+40Ca^{40}Ca+^{40}Ca and 48Ca+48Ca^{48}Ca+^{48}Ca nuclear reactions at E=80 MeV/A. Measurements were performed with the HiRA detector complemented by the 4π\pi Array at NSCL. A striking angular dependence in the laboratory frame is found within p-p correlation functions for both systems that greatly exceeds the measured and expected isospin dependent difference between the neutron-rich and neutron-deficient systems. Sources measured at backward angles reflect the participant zone of the reaction, while much larger sources observed at forward angles reflect the expanding, fragmenting and evaporating projectile remnants. The decrease of the size of the source with increasing momentum is observed at backward angles while a weaker trend in the opposite direction is observed at forward angles. The results are compared to the theoretical calculations using the BUU transport model.Comment: 8 pages, 3 figures, submitted to PR

    Correlations in intermediate-energy two-proton removal reactions

    Full text link
    We report final-state-exclusive measurements of the light charged fragments in coincidence with 26Ne residual nuclei following the direct two-proton removal from a neutron-rich 28Mg secondary beam. A Dalitz-plot analysis and comparisons with simulations show that a majority of the triple- coincidence events with two protons display phase-space correlations consistent with the (two-body) kinematics of a spatially-correlated pair-removal mechanism. The fraction of such correlated events, 56(12) %, is consistent with the fraction of the calculated cross section, 64 %, arising from spin S = 0 two-proton configurations in the entrance-channel (shell-model) 28Mg ground state wave function. This result promises access to an additional and more specific probe of the spin and spatial correlations of valence nucleon pairs in exotic nuclei produced as fast secondary beams.Comment: accepted for publication in Physical Review Letter

    Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale

    Get PDF
    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean

    Crowding Promotes the Switch from Hairpin to Pseudoknot Conformation in Human Telomerase RNA

    Full text link
    Formation of a pseudoknot in the conserved RNA core domain in the ribonucleoprotein human telomerase is required for function. In vitro experiments show that the pseudoknot (PK) is in equilibrium with an extended hairpin (HP) structure. We use molecular simulations of a coarse-grained model, which reproduces most of the salient features of the experimental melting profiles of PK and HP, to show that crowding enhances the stability of PK relative to HP in the wild type and in a mutant associated with dyskeratosis congenita. In monodisperse suspensions, small crowding particles increase the stability of compact structures to a greater extent than larger crowders. If the sizes of crowders in a binary mixture are smaller than the unfolded RNA, the increase in melting temperature due to the two components is additive. In a ternary mixture of crowders that are larger than the unfolded RNA, which mimics the composition of ribosome, large enzyme complexes and proteins in E. coli, the marginal increase in stability is entirely determined by the smallest component. We predict that crowding can restore partially telomerase activity in mutants, which dramatically decrease the PK stability.Comment: File "JACS_MAIN_archive_PDF_from_DOC.pdf" (PDF created from DOC) contains the main text of the paper File JACS_SI_archive.tex + 7 figures are the supplementary inf

    Investigations of three, four, and five-particle exit channels of levels in light nuclei created using a 9C beam

    Get PDF
    The interactions of a E/A=70-MeV 9C beam with a Be target was used to populate levels in Be, B, and C isotopes which undergo decay into many-particle exit channels. The decay products were detected in the HiRA array and the level energies were identified from their invariant mass. Correlations between the decay products were examined to deduce the nature of the decays, specifically to what extent all the fragments were created in one prompt step or whether the disintegration proceeded in a sequential fashion through long-lived intermediate states. In the latter case, information on the spin of the level was also obtained. Of particular interest is the 5-body decay of the 8C ground state which was found to disintegrate in two steps of two-proton decay passing through the 6Beg.s. intermediate state. The isobaric analog of 8Cg.s. in 8B was also found to undergo two-proton decay to the isobaric analog of 6Beg.s. in 6Li. A 9.69-MeV state in 10C was found to undergo prompt 4-body decay to the 2p+2alpha exit channel. The two protons were found to have a strong enhancementin the diproton region and the relative energies of all four p-alpha pairs were consistent with the 5Lig.s. resonance
    corecore