9,584 research outputs found
RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework
Increases in computational power and pressure for
more accurate simulations and estimations of accident scenario consequences are driving the need for Dynamic
Probabilistic Risk Assessment (PRA) [1] of very complex models. While more sophisticated algorithms and
computational power address the back end of this challenge, the front end is still handled by engineers that
need to extract meaningful information from the large amount of data and build these complex models.
Compounding this problem is the difficulty in knowledge transfer and retention, and the increasing speed of
software development. The above-described issues would have negatively
impacted deployment of the new high fidelity plant simulator RELAP-7 (Reactor Excursion and Leak
Analysis Program) at Idaho National Laboratory. Therefore, RAVEN that was initially focused to be the
plant controller for RELAP-7 will help mitigate future
RELAP-7 software engineering risks. In order to accomplish such a task Reactor Analysis
and V
Improved Term of the Muon Anomalous Magnetic Moment
We have completed the evaluation of all mass-dependent QED
contributions to the muon , or , in two or more different
formulations. Their numerical values have been greatly improved by an extensive
computer calculation. The new value of the dominant term is 132.6823 (72), which supersedes the old value 127.50 (41).
The new value of the three-mass term
is 0.0376 (1). The term is crudely estimated to
be about 0.005 and may be ignored for now. The total QED contribution to
is , where 0.02 and
1.15 are uncertainties in the and terms and 0.85 is from
the uncertainty in measured by atom interferometry. This raises the
Standard Model prediction by , or about 1/5 of the
measurement uncertainty of . It is within the noise of current
uncertainty () in the estimated hadronic
contributions to .Comment: Appendix A has been rewritten extensively. It includes the 4th-order
calculation for illustration. Version accepted by PR
Sixth-Order Vacuum-Polarization Contribution to the Lamb Shift of the Muonic Hydrogen
The sixth-order electron-loop vacuum-polarization contribution to the
Lamb shift of the muonic hydrogen ( bound
state) has been evaluated numerically. Our result is 0.007608(1) meV. This
eliminates the largest uncertainty in the theoretical calculation. Combined
with the proposed precision measurement of the Lamb shift it will lead to a
very precise determination of the proton charge radius.Comment: 4 pages, 5 figures the totoal LS number is change
Apollo asteroids (1566) Icarus and 2007 MK6: Icarus family members?
Although it is more complicated to search for near-Earth object (NEO)
families than main belt asteroid (MBA) families, since differential orbital
evolution within a NEO family can cause current orbital elements to drastically
differ from each other, we have found that Apollo asteroids (1566) Icarus and
the newly discovered 2007 MK6 are almost certainly related. Specifically, their
orbital evolutions show a similar profile, time shifted by only ~1000 yr, based
on our time-lag theory. The dynamical relationship between Icarus and 2007 MK6
along with a possible dust band, the Taurid-Perseid meteor swarm, implies the
first detection of an asteroidal NEO family, namely the "Icarus asteroid
family".Comment: 11 pages, 1 figure, to appear on Astrophysical Journal Letters
(journal info added
Narrow-Angle Astrometry with the Space Interferometry Mission: The Search for Extra-Solar Planets. II. Detection and Characterization of Planetary Systems
(Abridged) The probability of detecting additional companions is essentially
unchanged with respect to the single-planet configurations, but after fitting
and subtraction of orbits with astrometric signal-to-noise ratio
the false detection rates can be enhanced by up to a
factor 2; the periodogram approach results in robust multiple-planet detection
for systems with periods shorter than the SIM mission length, even at low
values of , while the least squares technique combined with
Fourier series expansions is arguably preferable in the long-period regime. The
accuracy on multiple-planet orbit reconstruction and mass determination suffers
a typical degradation of 30-40% with respect to single-planet solutions; mass
and orbital inclination can be measured to better than 10% for periods as short
as 0.1 yr, and for as low as , while
is required in order to measure with similar
accuracy systems harboring objects with periods as long as three times the
mission duration. For systems with all components producing
or greater, quasi-coplanarity can be reliably
established with uncertainties of a few degrees, for periods in the range
yr; in systems where at least one component has
, coplanarity measurements are compromised, with typical
uncertainties on the mutual inclinations of order of . Our
findings are illustrative of the importance of the contribution SIM will make
to the fields of formation and evolution of planetary systems.Comment: 61 pages, 14 figures, 5 tables, to appear in the September 2003 Issue
of the Publications of the Astronomical Society of the Pacifi
The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow
A brain microstate is characterized by a unique, fixed spatial distribution
of electrically active neurons with time varying amplitude. It is hypothesized
that a microstate implements a functional/physiological state of the brain
during which specific neural computations are performed. Based on this
hypothesis, brain electrical activity is modeled as a time sequence of
non-overlapping microstates with variable, finite durations (Lehmann and
Skrandies 1980, 1984; Lehmann et al 1987). In this study, EEG recordings from
109 participants during eyes closed resting condition are modeled with four
microstates. In a first part, a new confirmatory statistics method is
introduced for the determination of the cortical distributions of electric
neuronal activity that generate each microstate. All microstates have common
posterior cingulate generators, while three microstates additionally include
activity in the left occipital/parietal, right occipital/parietal, and anterior
cingulate cortices. This appears to be a fragmented version of the
metabolically (PET/fMRI) computed default mode network (DMN), supporting the
notion that these four regions activate sequentially at high time resolution,
and that slow metabolic imaging corresponds to a low-pass filtered version. In
the second part of this study, the microstate amplitude time series are used as
the basis for estimating the strength, directionality, and spectral
characteristics (i.e., which oscillations are preferentially transmitted) of
the connections that are mediated by the microstate transitions. The results
show that the posterior cingulate is an important hub, sending alpha and beta
oscillatory information to all other microstate generator regions.
Interestingly, beyond alpha, beta oscillations are essential in the maintenance
of the brain during resting state.Comment: pre-print, technical report, The KEY Institute for Brain-Mind
Research (Zurich), Kansai Medical University (Osaka
Innovations orthogonalization: a solution to the major pitfalls of EEG/MEG "leakage correction"
The problem of interest here is the study of brain functional and effective
connectivity based on non-invasive EEG-MEG inverse solution time series. These
signals generally have low spatial resolution, such that an estimated signal at
any one site is an instantaneous linear mixture of the true, actual, unobserved
signals across all cortical sites. False connectivity can result from analysis
of these low-resolution signals. Recent efforts toward "unmixing" have been
developed, under the name of "leakage correction". One recent noteworthy
approach is that by Colclough et al (2015 NeuroImage, 117:439-448), which
forces the inverse solution signals to have zero cross-correlation at lag zero.
One goal is to show that Colclough's method produces false human connectomes
under very broad conditions. The second major goal is to develop a new
solution, that appropriately "unmixes" the inverse solution signals, based on
innovations orthogonalization. The new method first fits a multivariate
autoregression to the inverse solution signals, giving the mixed innovations.
Second, the mixed innovations are orthogonalized. Third, the mixed and
orthogonalized innovations allow the estimation of the "unmixing" matrix, which
is then finally used to "unmix" the inverse solution signals. It is shown that
under very broad conditions, the new method produces proper human connectomes,
even when the signals are not generated by an autoregressive model.Comment: preprint, technical report, under license
"Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND
4.0)", https://creativecommons.org/licenses/by-nc-nd/4.0
The 10 to the 8th power bit solid state spacecraft data recorder
The results are summarized of a program to demonstrate the feasibility of Bubble Domain Memory Technology as a mass memory medium for spacecraft applications. The design, fabrication and test of a partially populated 10 to the 8th power Bit Data Recorder using 100 Kbit serial bubble memory chips is described. Design tradeoffs, design approach and performance are discussed. This effort resulted in a 10 to the 8th power bit recorder with a volume of 858.6 cu in and a weight of 47.2 pounds. The recorder is plug reconfigurable, having the capability of operating as one, two or four independent serial channel recorders or as a single sixteen bit byte parallel input recorder. Data rates up to 1.2 Mb/s in a serial mode and 2.4 Mb/s in a parallel mode may be supported. Fabrication and test of the recorder demonstrated the basic feasibility of Bubble Domain Memory technology for such applications. Test results indicate the need for improvement in memory element operating temperature range and detector performance
Search for anisotropic effects of hcp solid helium on optical lines of cesium impurities
The anisotropic effect of a hcp 4He solid matrix on cesium atoms has been
proposed as a tool to reveal the parity violating anapole moment of its
nucleus. It should also result in splitting the D2 optical excitation line in a
way depending on the light polarization. An experimental investigation has been
set up using oriented hcp helium crystals in which cesium metal grains are
embedded. Atoms are created by laser sputtering from this grains. Optical
absorption spectra of the D2 line have been recorded in the temperature range
of 1.0 to 1.4 K at liquid/solid coexistence pressure by monitoring the
fluorescence on the D2 line at 950 nm. No significant effect of the light
polarization has been found, suggesting a statistically isotropic disordered
solid environment for the cesium atoms.Comment: The original publication will be available at
http://www.springerlink.co
- …
