94 research outputs found
Recommended from our members
Compliant substrate epitaxy: Au on MoS2
A theory for the epitaxial growth of Au on MoS2 is developed and analyzed. The theory combines continuum linear elasticity theory with density functional theory to analyze epitaxial growth in this system. It is demonstrated that if one accounts for interfacial energies and strains, the presence of misfit dislocations, and the compliance of the MoS2 substrate, the experimentally observed growth orientation is favored despite the fact that it represents a larger elastic mismatch than two competing structures. The stability of the experimentally preferred orientation is attributed to the formation of a large number of strong Au-S bonds, and it is noted that this strong bond may serve as a means to exfoliate and transfer large single layers sheets of MoS2, as well as to engineer strain within single layers of MoS2. The potential for using a van der Waals-bonded layered material as a compliant substrate for applications in 2D electronic devices and epitaxial thin film growth is discussed
Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction
Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technology, the development of highly active and durable electrocatalysts based on Earth-abundant elements is of prime importance. In this context, nanostructured molybdenum sulfides (MoS x ) have received a great deal of attention as promising alternatives to precious metal-based catalysts. In this focus review, we summarize recent efforts towards identification of the active sites in MoS x -based electrocatalysts for the hydrogen evolution reaction (HER). We also discuss recent synthetic strategies for the engineering of catalyst structures to achieve high active site densities. Finally, we suggest ongoing and future research challenges in the design of advanced MoS x -based HER electrocatalysts
Avoidable mortality from giving tranexamic acid to bleeding trauma patients: an estimation based on WHO mortality data, a systematic literature review and data from the CRASH-2 trial
BACKGROUND: The CRASH-2 trial showed that early administration of tranexamic acid (TXA) safely reduces mortality in bleeding in trauma patients. Based on data from the CRASH-2 trial, global mortality data and a systematic literature review, we estimated the number of premature deaths that might be averted every year worldwide through the use of TXA. METHODS: We used CRASH-2 trial data to examine the effect of TXA on death due to bleeding by geographical region. We used WHO mortality data (2008) and data from a systematic review of the literature to estimate the annual number of in-hospital trauma deaths due to bleeding. We then used the relative risk estimates from the CRASH-2 trial to estimate the number of premature deaths that could be averted if all hospitalised bleeding trauma patients received TXA within one hour of injury, and within three hours of injury. Sensitivity analyses were used to explore the effect of uncertainty in the parameter estimates and the assumptions made in the model. RESULTS: There is no evidence that the effect of TXA on death due to bleeding varies by geographical region (heterogeneity p = 0.70). Based on WHO data and our systematic literature review, we estimate that each year worldwide there are approximately 400,000 in-hospital trauma deaths due to bleeding. If patients received TXA within one hour of injury then approximately 128,000 (uncertainty range [UR] ≈ 72,000 to 172,000) deaths might be averted. If patients received TXA within three hours of injury then approximately 112,000 (UR ≈ 68,000 to 148,000) deaths might be averted. Country specific estimates show that the largest numbers of deaths averted would be in India and China. CONCLUSIONS: The use of TXA in the treatment of traumatic bleeding has the potential to prevent many premature deaths every year. A large proportion of the potential health gains are in low and middle income countries
The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation
Ectopic lymphoid follicles are a key feature of chronic inflammatory autoimmune and infectious diseases, such as rheumatoid arthritis, Sjögren's syndrome, and Helicobacter pylori-induced gastritis. Homeostatic chemokines are considered to be involved in the formation of such tertiary lymphoid tissue. High expression of CXCL13 and its receptor, CXCR5, has been associated with the formation of ectopic lymphoid follicles in chronic infectious diseases. Here, we defined the role of CXCR5 in the development of mucosal tertiary lymphoid tissue and gastric inflammation in a mouse model of chronic H. pylori infection. CXCR5-deficient mice failed to develop organized gastric lymphoid follicles despite similar bacterial colonization density as infected wild-type mice. CXCR5 deficiency altered Th17 responses but not Th1-type cellular immune responses to H. pylori infection. Furthermore, CXCR5-deficient mice exhibited lower H. pylori-specific serum IgG and IgA levels and an overall decrease in chronic gastric immune responses. In conclusion, the development of mucosal tertiary ectopic follicles during chronic H. pylori infection is strongly dependent on the CXCL13/CXCR5 signaling axis, and lack of de novo lymphoid tissue formation attenuates chronic immune responses
Deterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor–Liquid–Solid Growth Mode
- …
