3,257 research outputs found
Reactor power systems for manned earth orbital applications
Design requirements for reactor power system of manned earth orbital space statio
Local boron doping quantification in homoepitaxial diamond structures
The capability of transmission electronmicroscopy (TEM) using the high angle annular dark fieldmode (HAADF,also labelled Z-contrast) to quantify boron concentration, in the high doping range between 1019cm−3 and 1021cm−3, is demonstrated. Thanks to the large relative variation of atomic number Z between carbon and boron, doping concentration maps and profiles are obtained with a nanometer-scale resolution. A novel numerical simulation procedure allows the boron concentration quantification and demonstrates the high sensitivity and
spatial resolution of the technique.4 page
Spatial Distribution of Competing Ions around DNA in Solution
The competition of monovalent and divalent cations for proximity to negatively charged DNA is of biological importance and can provide strong constraints for theoretical treatments of polyelectrolytes. Resonant x-ray scattering experiments have allowed us to monitor the number and distribution of each cation in a mixed ion cloud around DNA. These measurements provide experimental evidence to support a general theoretical prediction: the normalized distribution of each ion around polyelectrolytes remains constant when ions are mixed at different ratios. In addition, the amplitudes of the scattering signals throughout the competition provide a measurement of the surface concentration parameter that predicts the competition behavior of these cations. The data suggest that ion size needs to be taken into account in applying Poisson-Boltzmann treatments to polyelectrolytes such as DNA
Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons
In our article we report first quantitative measurements of imaging
performance for the current generation of hybrid pixel detector, Medipix3, as
direct electron detector. Utilising beam energies of 60 & 80 keV, measurements
of modulation transfer function (MTF) and detective quantum efficiency (DQE)
have revealed that, in single pixel mode (SPM), energy threshold values can be
chosen to maximize either the MTF or DQE, obtaining values near to, or even
exceeding, those for an ideal detector. We have demonstrated that the Medipix3
charge summing mode (CSM) can deliver simultaneous, near ideal values of both
MTF and DQE. To understand direct detection performance further we have
characterized the detector response to single electron events, building an
empirical model which can predict detector MTF and DQE performance based on
energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging
performance, recording a fully exposed electron diffraction pattern at 24-bit
depth and images in SPM and CSM modes. Taken together our findings highlight
that for transmission electron microscopy performed at low energies (energies
<100 keV) thick hybrid pixel detectors provide an advantageous and alternative
architecture for direct electron imagin
Electrochemical Properties of Intermetallic Phases and Common Impurity Elements in Magnesium Alloys
The electrochemical properties of the key intermetallic particles that form in commercial Mg alloys are presented. Results were collected via microcapillary electrochemical testing upon bulk intermetallic analogs in dilute chloride solution. The intermetallics investigated were Mg_17Al_12, Mg_2Al_3, Mg_2Ca, Mg_12Ce, Mg_12La, Mg_3Nd, Mg_2Si, Mg_24Y_5, and MgZn_2. It was found that the intermetallic phases, with the exception of Mg_2Ca, were more noble than Mg, supporting increased levels of cathodic kinetics; however, the variation in electrochemical response between intermetallics was large in terms of corrosion potential, presence of a passive window, and currents sustained over a range of potentials
Epidemiology of bovine ephemeral fever in Australia 1981-1985
Bovine ephemeral fever is an important viral disease of cattle in Australia. The disease occurred each year, principally in summer and autumn, between 1981 and 1985. Queensland and the northern half of New South Wales were areas of greatest activity with only sporadic cases being reported from the Northern Territory and the northern third of Western Australia. Since 1981, the disease has been endemic in an extensive area of eastern Australia and has tended to occur in widely scattered outbreaks rather than the north-south advancing wave form of the epidemics of 1936-37, 1967-68, 1970-71 and 1972-74. The southernmost outbreaks between 1981 and 1985 were well within the limits of these earlier epidemics. The pattern of disease appears to have become seasonally endemic rather than periodically endemic in the northern two-thirds of eastern Australia. Ephemeral fever was not recorded in Victoria, Tasmania, South Australia or the southern part of Western Australia between 1981 and 1985. The disease was most frequently reported in cattle under 3 years of age, but also occurred in older cattle
Column ratio mapping: a processing technique for atomic resolution high angle annular dark field(HAADF) images
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [1 1 0]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 Å-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument
Descendants of the Jurassic turiasaurs from Iberia found refuge in the Early Cretaceous of western USA
A new, largely complete eusauropod dinosaur with cranial and postcranial elements from two skeletons, Mierasaurus bobyoungi gen. nov., sp. nov. from the lower Yellow Cat Member (Early Cretaceous) of Utah (USA), is the first recognized member of Turiasauria from North America. Moreover, according to our phylogenetic results, Moabosaurus utahensis from the lower Yellow Cat Member of Utah (USA) is also a member of this clade. This group of non-neosauropod eusauropods, which now includes five genera (Losillasaurus, Turiasaurus, Mierasaurus, Moabosaurus and Zby), was previously known only from the Jurassic of Europe. These recent discoveries in Utah suggest that turiasaurs as a lineage survived the Jurassic-Cretaceous extinction boundary and expanded their known range, at least, into western North America. The revised spatiotemporal distribution of turiasaurs is consistent with the presence of a land connection between North America and Europe sometime during the late Tithonian to Valanginian (c.147-133 Ma). Mierasaurus and Moabosaurus are the only non-neosauropod eusauropods known from North America, despite being younger than the classic neosauropods of the Morrison Formation (c.150 Ma)
- …
