453 research outputs found
Simulation Studies on the Stability of the Vortex-Glass Order
The stability of the three-dimensional vortex-glass order in random type-II
superconductors with point disorder is investigated by equilibrium Monte Carlo
simulations based on a lattice XY model with a uniform field threading the
system. It is found that the vortex-glass order, which stably exists in the
absence of screening, is destroyed by the screenng effect, corroborating the
previous finding based on the spatially isotropic gauge-glass model. Estimated
critical exponents, however, deviate considerably from the values reported for
the gauge-glass model.Comment: Minor modifications made, a few referenced added; to appear in J.
Phys. Soc. Jpn. Vol.69 No.1 (2000
Direct Mott Insulator-to-Superfluid Transition in the Presence of Disorder
We introduce a new renormalization group theory to examine the quantum phase
transitions upon exiting the insulating phase of a disordered, strongly
interacting boson system. For weak disorder we find a direct transition from
this Mott insulator to the Superfluid phase. In d > 4 a finite region around
the particle-hole symmetric point supports this direct transition, whereas for
2=< d <4 perturbative arguments suggest that the direct transition survives
only precisely at commensurate filling. For strong disorder the renormalization
trajectories pass next to two fixed points, describing a pair of distinct
transitions; first from the Mott insulator to the Bose glass, and then from the
Bose glass to the Superfluid. The latter fixed point possesses statistical
particle-hole symmetry and a dynamical exponent z, equal to the dimension d.Comment: 4 pages, Latex, submitted to Physical Review Letter
Cluster Monte Carlo Algorithm for the Quantum Rotor Model
We propose a highly efficient "worm" like cluster Monte Carlo algorithm for
the quantum rotor model in the link-current representation. We explicitly prove
detailed balance for the new algorithm even in the presence of disorder. For
the pure quantum rotor model with the new algorithm yields high
precision estimates for the critical point and the correlation
length exponent . For the disordered case, , we
find .Comment: 5 pages, 3 figure
Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function
Using Monte Carlo simulations, we have studied isothermal aging of
three-dimensional Ising spin-glass model focusing on quasi-equilibrium behavior
of the spin auto-correlation function. Weak violation of the time translational
invariance in the quasi-equilibrium regime is analyzed in terms of {\it
effective stiffness} for droplet excitations in the presence of domain walls.
Within the range of computational time window, we have confirmed that the
effective stiffness follows the expected scaling behavior with respect to the
characteristic length scales associated with droplet excitations and domain
walls, whose growth law has been extracted from our simulated data. Implication
of the results are discussed in relation to experimental works on ac
susceptibilities.Comment: 18 pages, 6 figure
Geometric Aspects of the Dipolar Interaction in Lattices of Small Particles
The hysteresis curves of systems composed of small interacting magnetic
particles, regularly placed on stacked layers, are obtained with Monte Carlo
simulations. The remanence as a function of temperature, in interacting
systems, presents a peak that separates two different magnetic states. At low
temperatures, small values of remanence are a consequence of antiferromagnetic
order due to the dipolar interaction. At higher values of temperature the
increase of the component normal to the lattice plane is responsible for the
small values of remanence. The effect of the number of layers, coordination
number and distance between particles are investigated.Comment: 5 pages, 7 figure
Superconductor-to-Normal Phase Transition in a Vortex Glass Model: Numerical Evidence for a New Percolation Universality Class
The three-dimensional strongly screened vortex-glass model is studied
numerically using methods from combinatorial optimization. We focus on the
effect of disorder strength on the ground state and found the existence of a
disorder-driven normal-to-superconducting phase transition. The transition
turns out to be a geometrical phase transition with percolating vortex loops in
the ground state configuration. We determine the critical exponents and provide
evidence for a new universality class of correlated percolation.Comment: 11 pages LaTeX using IOPART.cls, 11 eps-figures include
Glassy dynamics and aging in an exactly solvable spin model
We introduce a simple two-dimensional spin model with short-range
interactions which shows glassy behavior despite a Hamiltonian which is
completely homogeneous and possesses no randomness. We solve exactly for both
the static partition function of the model and the distribution of energy
barriers, giving us the equilibration time-scales at low temperature.
Simulations of instantaneous quenches and of annealing of the model are in good
agreement with the analytic calculations. We also measure the two-time spin
correlation as a function of waiting time, and show that the model has aging
behavior consistent with the distribution of barrier heights. The model appears
to have no sharp glass transition. Instead, it falls out of equilibrium at a
temperature which decreases logarithmically as a function of the cooling time.Comment: 16 pages, 4 postscript figures, typeset in LaTeX using the RevTeX
macro packag
"Glassy Dynamics" in Ising Spin Glasses -- Experiment and Simulation
The field-cooled magnetization (FCM) processes of Ising spin glasses under
relatively small fields are investigated by experiment on
Fe_{0.55}Mn_{0.45}TiO_3 and by numerical simulation on the three-dimensional
Edwards-Anderson model. Both results are explained in a unified manner by means
of the droplet picture. In particular, the cusp-like behavior of the FCM is
interpreted as evidence, not for an equilibrium phase transition under a finite
magnetic field, but for a dynamical (`blocking') transition frequently observed
in glassy systems.Comment: 4 pages, 7 figure
Critical exponents in Ising spin glasses
We determine accurate values of ordering temperatures and critical exponents
for Ising Spin Glass transitions in dimension 4, using a combination of finite
size scaling and non-equilibrium scaling techniques. We find that the exponents
and vary with the form of the interaction distribution, indicating
non-universality at Ising spin glass transitions. These results confirm
conclusions drawn from numerical data for dimension 3.Comment: 6 pages, RevTeX (or Latex, etc), 10 figures, Submitted to PR
Numerical study of the strongly screened vortex glass model in an external field
The vortex glass model for a disordered high-T_c superconductor in an
external magnetic field is studied in the strong screening limit. With exact
ground state (i.e. T=0) calculations we show that 1) the ground state of the
vortex configuration varies drastically with infinitesimal variations of the
strength of the external field, 2) the minimum energy of global excitation
loops of length scale L do not depend on the strength of the external field,
however 3) the excitation loops themself depend sensibly on the field. From 2)
we infer the absence of a true superconducting state at any finite temperature
independent of the external field.Comment: 6 pages RevTeX, 5 eps-figures include
- …
