81 research outputs found
Quantifying through-space charge transfer dynamics in \u3c0-coupled molecular systems
understanding the role of intermolecular interaction on through-space charge transfer characteristics in \u3c0-stacked molecular systems is central to the rational design of electronic materials. However, a quantitative study of charge transfer in such systems is often difficult because of poor control over molecular morphology. Here we use the core-hole clock implementation of resonant photoemission spectroscopy to study the femtosecond chargetransfer dynamics in cyclophanes, which consist of two precisely stacked \u3c0-systems held together by aliphatic chains. We study two systems, [2,2]paracyclophane (22PCP) and [4,4]paracyclophane (44PCP), with inter-ring separations of 3.0 and 4.0 \uc5, respectively. We find that charge transfer across the \u3c0-coupled system of 44PCP is 20 times slower than in 22PCP. We attribute this difference to the decreased inter-ring electronic coupling in 44PCP.
These measurements illustrate the use of core-hole clock spectroscopy as a general tool for quantifying through-space coupling in \u3c0-stacked systems
Length-Independent Charge Transport in Chimeric Molecular Wires
Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high-performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors
Spontaneous transmetalation at the ZnPc/Al(100) interface
Metal-phthalocyanines (MPcs) are a class of organic macrocycles that have received much attention for their potential use in various applications, including molecular electronics. In recent years, the on-surface synthesis of different MPcs has been demonstrated via deposition of atomic species, sample heating and scanning tunneling microscopy (STM) manipulation. However, the spontaneous substitution of the central metal atom with a substrate one, known as transmetalation, remains a less explored process. Here, we study the transmetalation of ZnPc on Al(100) using a combination of STM and density functional theory (DFT) computations. Previously published X-ray photoelectron spectroscopy (XPS) data indicate the absence of Zn atoms from the interface, while our STM images show that a central atom is still present. This suggests that the transmetalation process occurs spontaneously for all ZnPc molecules. Our DFT calculations reveal that the transmetalation of Zn with Al releases 2 eV per molecule, providing thermodynamic evidence for the process. The on-surface synthesized aluminium phthalocyanine (AlPc) molecules are stabilised by the formation of a bond between the central metal atom and the substrate, similar to that found in chloroaluminium phthalocyanine (ClAlPc), with the consequent suppresion of the paramagnetism of free AlPc
Determination of the structure and geometry of N-heterocyclic carbenes on Au(111) using high-resolution spectroscopy
N-heterocyclic carbenes (NHCs) bind very strongly to transition metals due to their unique electronic structure featuring a divalent carbon atom with a lone pair in a highly directional sp(2)-hybridized orbital. As such, they can be assembled into monolayers on metal surfaces that have enhanced stability compared to their thiol-based counterparts. The utility of NHCs to form such robust self-assembled monolayers (SAMs) was only recently recognized and many fundamental questions remain. Here we investigate the structure and geometry of a series of NHCs on Au(111) using high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. We find that the N-substituents on the NHC ring strongly affect the molecule-metal interaction and steer the orientation of molecules in the surface layer. In contrast to previous reports, our experimental and theoretical results provide unequivocal evidence that NHCs with N-methyl substituents bind to undercoordinated adatoms to form flat-lying complexes. In these SAMs, the donor-acceptor interaction between the NHC lone pair and the undercoordinated Au adatom is primarily responsible for the strong bonding of the molecules to the surface. NHCs with bulkier N-substituents prevent the formation of such complexes by forcing the molecules into an upright orientation. Our work provides unique insights into the bonding and geometry of NHC monolayers; more generally, it charts a clear path to manipulating the interaction between NHCs and metal surfaces using traditional coordination chemistry synthetic strategies
A review of the cultural significance of traditional orchards using examples from selected European countries
Abstract: Traditional orchards are one of the most well-known examples of multifunctional farming. They have a long history of providing different fruits and combining various other agricultural activities, such as extensive animal farming, with cultural significance that reflect the different regional landscapes of Europe. Objectives: This study investigates the extent of traditional orchards and addresses their cultural significance and their contribution to the Sustainable Development Goals in the context of multifunctional agricultural landscapes. Method: The presented work combines an expert survey conducted in ten EUCALAND network member countries by means of both a standardised and a more detailed questionnaire to compare and summarize the situation of traditional orchards in these countries. Results: The results show that traditional orchards are diminishing on the European scale but still have huge significance in many regions. Provisioning ecosystem services, such as fruit production, are valued in terms of disease resistance and genetic diversity which is likely to be of increasing importance in the context of future climate change and concerns over food security. The most important drivers for maintaining traditional orchards appears to be based on cultural ecosystem services and the benefits they provide to society, including the preservation of traditions and regional identity, attractive places for recreation, aesthetic appreciation, inspiration for artists. The examples of best practices from the contributing countries all reveal the close connection of these orchards to local communities and to often specific traditional knowledge. Conclusion: The presented review of the current situation for these important components of the agricultural landscape as well as country-specific management characteristics has the potential to inspire other countries to maintain their traditional orchards
Relating Energy Level Alignment and Amine-Linked Single Molecule Junction Conductance
Using photoemission spectroscopy, we determine the relationship between
electronic energy level alignment at a metal-molecule interface and
single-molecule junction transport data. We measure the position of the highest
occupied molecular orbital (HOMO) relative to the Au metal Fermi level for
three 1,4-benzenediamine derivatives on Au(111) and Au(110) with ultraviolet
and resonant x-ray photoemission spectroscopy. We compare these results to
scanning tunnelling microscope based break-junction measurements of single
molecule conductance and to first-principles calculations. We find that the
energy difference between the HOMO and Fermi level for the three molecules
adsorbed on Au(111) correlate well with changes in conductance, and agree well
with quasiparticle energies computed from first-principles calculations
incorporating self-energy corrections. On the Au(110) which present Au atoms
with lower-coordination, critical in break-junction conductance measurements,
we see that the HOMO level shifts further from the Fermi level. These results
provide the first direct comparison of spectroscopic energy level alignment
measurements with single molecule junction transport data
Country Perspectives on Hay-Making Landscapes as Part of the European Agricultural Heritage
This paper provides an overview of traditional hay-making structures and the related agricultural landscapes in Europe. The information was collected using a standardised questionnaire that was completed by experts from different countries. What all countries had in common was that hay production with its corresponding structures was widespread. However, the scope and importance differed among the countries today. We found differences in type and extent, in degree of awareness, and in the cultural meaning of hay-making structures. The differences were connected with built structures, as well as with other tangible and intangible aspects of cultural heritage. The distribution of the broad variety of hay-making-related structures, especially semipermanent ones, has changed throughout history, as well as the hay-making techniques, as a result of agrarian specialisation, land reclamation, and consolidation. Today, in some countries, the relevance of hay-making was mainly connected to horse keeping and landscape management (like in Germany and Hungary), while in others (like Slovakia and Slovenia), it was still predominantly used for cattle and sheep
Noncontact Layer Stabilization of Azafullerene Radicals: Route toward High-Spin-Density Surfaces
: We deposit azafullerene C59N• radicals in a vacuum on the Au(111) surface for layer thicknesses between 0.35 and 2.1 monolayers (ML). The layers are characterized using X-ray photoemission (XPS) and X-ray absorption fine structure (NEXAFS) spectroscopy, low-temperature scanning tunneling microscopy (STM), and by density functional calculations (DFT). The singly unoccupied C59N orbital (SUMO) has been identified in the N 1s NEXAFS/XPS spectra of C59N layers as a spectroscopic fingerprint of the molecular radical state. At low molecular coverages (up to 1 ML), films of monomeric C59N are stabilized with the nonbonded carbon orbital neighboring the nitrogen oriented toward the Au substrate, whereas in-plane intermolecular coupling into diamagnetic (C59N)2 dimers takes over toward the completion of the second layer. By following the C59N• SUMO peak intensity with increasing molecular coverage, we identify an intermediate high-spin-density phase between 1 and 2 ML, where uncoupled C59N• monomers in the second layer with pronounced radical character are formed. We argue that the C59N• radical stabilization of this supramonolayer phase of monomers is achieved by suppressed coupling to the substrate. This results from molecular isolation on top of the passivating azafullerene contact layer, which can be explored for molecular radical state stabilization and positioning on solid substrates
Tuning ultrafast electron injection dynamics at organic-graphene/metal interfaces
We compare the ultrafast charge transfer dynamics of molecules on epitaxial graphene and bilayer graphene grown on Ni(111) interfaces through first principles calculations and X-ray resonant photoemission spectroscopy. We use 4,4'-bipyridine as a prototypical molecule for these explorations as the energy level alignment of core-excited molecular orbitals allows ultrafast injection of electrons from a substrate to a molecule on a femtosecond timescale. We show that the ultrafast injection of electrons from the substrate to the molecule is 3c4 times slower on weakly coupled bilayer graphene than on epitaxial graphene. Through our experiments and calculations, we can attribute this to a difference in the density of states close to the Fermi level between graphene and bilayer graphene. We therefore show how graphene coupling with the substrate influences charge transfer dynamics between organic molecules and graphene interfaces
Initial measurement of reactor antineutrino oscillation at SNO+
The SNO+ collaboration reports its first spectral analysis of long-baseline
reactor antineutrino oscillation using 114 tonne-years of data. Fitting the
neutrino oscillation probability to the observed energy spectrum yields
constraints on the neutrino mass-squared difference . In the
ranges allowed by previous measurements, the best-fit is
(8.85) 10 eV. This measurement is
continuing in the next phases of SNO+ and is expected to surpass the present
global precision on with about three years of data
- …
