527 research outputs found
Perturbative regimes in central spin models
Central spin models describe several types of solid state nanostructures
which are presently considered as possible building blocks of future quantum
information processing hardware. From a theoretical point of view, a key issue
remains the treatment of the flip-flop terms in the Hamiltonian in the presence
of a magnetic field. We systematically study the influence of these terms, both
as a function of the field strength and the size of the spin baths. We find
crucial differences between initial states with central spin configurations of
high and such of low polarizations. This has strong implications with respect
to the influence of a magnetic field on the flip-flop terms in central spin
models of a single and more than one central spin. Furthermore, the
dependencies on bath size and field differ from those anticipated so far. Our
results might open the route for the systematic search for more efficient
perturbative treatments of central spin problems.Comment: 7 pages, 3 figure
Hyperfine induced spin and entanglement dynamics in Double Quantum Dots: A homogeneous coupling approach
We investigate hyperfine induced electron spin and entanglement dynamics in a
system of two quantum dot spin qubits. We focus on the situation of zero
external magnetic field and concentrate on approximation-free theoretical
methods. We give an exact solution of the model for homogeneous hyperfine
coupling constants (with all coupling coefficients being equal) and varying
exchange coupling, and we derive the dynamics therefrom. After describing and
explaining the basic dynamical properties, the decoherence time is calculated
from the results of a detailed investigation of the short time electron spin
dynamics. The result turns out to be in good agreement with experimental data.Comment: 10 pages, 8 figure
Nuclear spin state narrowing via gate--controlled Rabi oscillations in a double quantum dot
We study spin dynamics for two electrons confined to a double quantum dot
under the influence of an oscillating exchange interaction. This leads to
driven Rabi oscillations between the --state and the
--state of the two--electron system. The width of the
Rabi resonance is proportional to the amplitude of the oscillating exchange. A
measurement of the Rabi resonance allows one to narrow the distribution of
nuclear spin states and thereby to prolong the spin decoherence time. Further,
we study decoherence of the two-electron states due to the hyperfine
interaction and give requirements on the parameters of the system in order to
initialize in the --state and to perform a
operation with unit fidelity.Comment: v1:9 pages, 1 figure; v2: 13 pages, 2 figures, added section on
measurement, to appear in Phys. Rev.
Universal phase shift and non-exponential decay of driven single-spin oscillations
We study, both theoretically and experimentally, driven Rabi oscillations of
a single electron spin coupled to a nuclear spin bath. Due to the long
correlation time of the bath, two unusual features are observed in the
oscillations. The decay follows a power law, and the oscillations are shifted
in phase by a universal value of ~pi/4. These properties are well understood
from a theoretical expression that we derive here in the static limit for the
nuclear bath. This improved understanding of the coupled electron-nuclear
system is important for future experiments using the electron spin as a qubit.Comment: Main text: 4 pages, 3 figures, Supplementary material: 2 pages, 3
figure
Theory of excitons in cubic III-V semiconductor GaAs, InAs and GaN quantum dots: fine structure and spin relaxation
Exciton fine structures in cubic III-V semiconductor GaAs, InAs and GaN
quantum dots are investigated systematically and the exciton spin relaxation in
GaN quantum dots is calculated by first setting up the effective exciton
Hamiltonian. The electron-hole exchange interaction Hamiltonian, which consists
of the long- and short-range parts, is derived within the effective-mass
approximation by taking into account the conduction, heavy- and light-hole
bands, and especially the split-off band. The scheme applied in this work
allows the description of excitons in both the strong and weak confinement
regimes. The importance of treating the direct electron-hole Coulomb
interaction unperturbatively is demonstrated. We show in our calculation that
the light-hole and split-off bands are negligible when considering the exciton
fine structure, even for GaN quantum dots, and the short-range exchange
interaction is irrelevant when considering the optically active doublet
splitting. We point out that the long-range exchange interaction, which is
neglected in many previous works, contributes to the energy splitting between
the bright and dark states, together with the short-range exchange interaction.
Strong dependence of the optically active doublet splitting on the anisotropy
of dot shape is reported. Large doublet splittings up to 600 eV, and even
up to several meV for small dot size with large anisotropy, is shown in GaN
quantum dots. The spin relaxation between the lowest two optically active
exciton states in GaN quantum dots is calculated, showing a strong dependence
on the dot anisotropy. Long exciton spin relaxation time is reported in GaN
quantum dots. These findings are in good agreement with the experimental
results.Comment: 22+ pages, 16 figures, several typos in the published paper are
corrected in re
Design of the Magnet System of the Neutron Decay Facility PERC
The PERC (Proton and Electron Radiation Channel) facility is currently under
construction at the research reactor FRM II, Garching. It will serve as an
intense and clean source of electrons and protons from neutron beta decay for
precision studies. It aims to contribute to the determination of the
Cabibbo-Kobayashi-Maskawa quark-mixing element from neutron decay data
and to search for new physics via new effective couplings. PERC's central
component is a 12m long superconducting magnet system. It hosts an 8m long
decay region in a uniform field. An additional high-field region selects the
phase space of electrons and protons which can reach the detectors and largely
improves systematic uncertainties. We discuss the design of the magnet system
and the resulting properties of the magnetic field.Comment: Proceedings of the International Workshop on Particle Physics at
Neutron Sources PPNS 2018, Grenoble, France, May 24-26, 201
Driven coherent oscillations of a single electron spin in a quantum dot
The ability to control the quantum state of a single electron spin in a
quantum dot is at the heart of recent developments towards a scalable
spin-based quantum computer. In combination with the recently demonstrated
exchange gate between two neighbouring spins, driven coherent single spin
rotations would permit universal quantum operations. Here, we report the
experimental realization of single electron spin rotations in a double quantum
dot. First, we apply a continuous-wave oscillating magnetic field, generated
on-chip, and observe electron spin resonance in spin-dependent transport
measurements through the two dots. Next, we coherently control the quantum
state of the electron spin by applying short bursts of the oscillating magnetic
field and observe about eight oscillations of the spin state (so-called Rabi
oscillations) during a microsecond burst. These results demonstrate the
feasibility of operating single-electron spins in a quantum dot as quantum
bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary
materia
ESCAP CovCAP survey of heads of academic departments to assess the perceived initial (April/May 2020) impact of the COVID-19 pandemic on child and adolescent psychiatry services.
In April 2020, the European Society for Child and Adolescent Psychiatry (ESCAP) Research Academy and the ESCAP Board launched the first of three scheduled surveys to evaluate the impact of the coronavirus disease 2019 (COVID-19) pandemic on child and adolescent psychiatry (CAP) services in Europe and to assess the abilities of CAP centers to meet the new challenges brought on by the crisis. The survey was a self-report questionnaire, using a multistage process, which was sent to 168 heads of academic CAP services in 24 European countries. Eighty-two responses (56 complete) from 20 countries, representing the subjective judgement of heads of CAP centers, were received between mid-April and mid-May 2020. Most respondents judged the impact of the crisis on the mental health of their patients as medium (52%) or strong (33%). A large majority of CAP services reported no COVID-19 positive cases among their inpatients and most respondents declared no or limited sick leaves in their team due to COVID-19. Outpatient, daycare, and inpatient units experienced closures or reductions in the number of treated patients throughout Europe. In addition, a lower referral rate was observed in most countries. Respondents considered that they were well equipped to handle COVID-19 patients despite a lack of protective equipment. Telemedicine was adopted by almost every team despite its sparse use prior to the crisis. Overall, these first results were surprisingly homogeneous, showing a substantially reduced patient load and a moderate effect of the COVID-19 crisis on psychopathology. The effect on the organization of CAP services appears profound. COVID-19 crisis has accelerated the adoption of new technologies, including telepsychiatry
Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft tissue masses?
Objectives: To determine if quantitative and qualitative shear wave elastography have roles in evaluating musculoskeletal masses. Methods: 105 consecutive patients, prospectively referred for biopsy within a specialist sarcoma centre, underwent B-mode, quantitative (m/s) and qualitative (colour map) shear wave elastography. Reference was histology from subsequent biopsy or excision where possible. Statistical modelling was performed to test elastography data and/or B-mode imaging in predicting malignancy. Results: Of 105 masses, 39 were malignant and 6 had no histology but benign characteristics at 12 months. Radiologist agreement for B-mode and elastography was moderate to excellent Kw 0.52-0.64; PABAKw 0.85-0.90). B-Mode imaging had 78.8% specificity, 76.9% sensitivity for malignancy. Quantitatively, adjusting for age, B-mode and lesion volume there was no statistically significant association between longitudinal velocity and malignancy (OR [95% CI] 0.40[0.10, 1.60], p=0.193), but some evidence that higher transverse velocity was associated with decreased odds of malignancy (0.28[0.06, 1.28], p=0.101). Qualitatively malignant masses tended to be towards the blue spectrum (lower velocities); 39.5% (17/43) of predominantly blue masses were malignant, compared to 14.3% (1/7) of red lesions. Conclusions: Quantitatively and qualitatively there is no statistically significant association between shear wave velocity and malignancy. There is no clear additional role to B-mode imaging currently. Key Points: • Correlation between shear wave velocity and soft tissue malignancy was statistically insignificant• B-mode ultrasound is 76.9 % sensitive and 78.8 % specific• Statistical models show elastography does not significantly add to lesion assessmen
- …
