3,113 research outputs found
The uniqueness of the invariant polarisation-tensor field for spin-1 particles in storage rings
We argue that the invariant tensor field introduced in [1] is unique under
the condition that the invariant spin field is unique, and thereby complete
that part of the discussion in that paper.Comment: 8 page
Solving String Field Equations: New Uses for Old Tools
It is argued that the (NS-sector) superstring field equations are integrable,
i.e. their solutions are obtainable from linear equations. We adapt the
25-year-old solution-generating "dressing" method and reduce the construction
of nonperturbative superstring configurations to a specific cohomology problem.
The application to vacuum superstring field theory is outlined.Comment: Talk presented by O.L. at the 35th International Symposium Ahrenshoop
on the Theory of Elementary Particles, Berlin, Germany, 26-30 Aug 2002; v2:
minor corrections, textheight adjuste
Theme Overview: Agriculture and Water Quality in the Cornbelt: Overview of Issues and Approaches
Resource /Energy Economics and Policy, Q25,
Carrier-envelope phase control over pathway interference in strong-field dissociation of H
The dissociation of an H molecular-ion beam by linearly polarized,
carrier-envelope-phase-tagged 5 fs pulses at 4W/cm with a
central wavelength of 730 nm was studied using a coincidence 3D momentum
imaging technique. Carrier-envelope-phase-dependent asymmetries in the emission
direction of H fragments relative to the laser polarization were observed.
These asymmetries are caused by interference of odd and even photon number
pathways, where net-zero photon and 1-photon interference predominantly
contributes at H+H kinetic energy releases of 0.2 -- 0.45 eV, and
net-2-photon and 1-photon interference contributes at 1.65 -- 1.9 eV. These
measurements of the benchmark H molecule offer the distinct advantage
that they can be quantitatively compared with \textit{ab initio} theory to
confirm our understanding of strong-field coherent control via the
carrier-envelope phase
Continuous image distortion by astrophysical thick lenses
Image distortion due to weak gravitational lensing is examined using a
non-perturbative method of integrating the geodesic deviation and optical
scalar equations along the null geodesics connecting the observer to a distant
source. The method we develop continuously changes the shape of the pencil of
rays from the source to the observer with no reference to lens planes in
astrophysically relevant scenarios. We compare the projected area and the ratio
of semi-major to semi-minor axes of the observed elliptical image shape for
circular sources from the continuous, thick-lens method with the commonly
assumed thin-lens approximation. We find that for truncated singular isothermal
sphere and NFW models of realistic galaxy clusters, the commonly used thin-lens
approximation is accurate to better than 1 part in 10^4 in predicting the image
area and axes ratios. For asymmetric thick lenses consisting of two massive
clusters separated along the line of sight in redshift up to \Delta z = 0.2, we
find that modeling the image distortion as two clusters in a single lens plane
does not produce relative errors in image area or axes ratio more than 0.5%Comment: accepted to GR
Image distortion in non perturbative gravitational lensing
We introduce the idea of {\it shape parameters} to describe the shape of the
pencil of rays connecting an observer with a source lying on his past
lightcone. On the basis of these shape parameters, we discuss a setting of
image distortion in a generic (exact) spacetime, in the form of three {\it
distortion parameters}. The fundamental tool in our discussion is the use of
geodesic deviation fields along a null geodesic to study how source shapes are
propagated and distorted on the path to an observer. We illustrate this
non-perturbative treatment of image distortion in the case of lensing by a
Schwarzschild black hole. We conclude by showing that there is a
non-perturbative generalization of the use of Fermat's principle in lensing in
the thin-lens approximation.Comment: 22 pages, 6 figures, to appear in Phys. Rev. D (January 2001
String Field Theory Projectors for Fermions of Integral Weight
The interaction vertex for a fermionic first order system of weights (1,0)
such as the twisted bc-system, the fermionic part of N=2 string field theory
and the auxiliary \eta\xi system of N=1 strings is formulated in the Moyal
basis. In this basis, the Neumann matrices are diagonal; as usual, the
eigenvectors are labeled by \kappa\in\R. Oscillators constructed from these
eigenvectors make up two Clifford algebras for each nonzero value of \kappa.
Using a generalization of the Moyal-Weyl map to the fermionic case, we classify
all projectors of the star-algebra which factorize into projectors for each
\kappa-subspace. At least for the case of squeezed states we recover the full
set of bosonic projectors with this property. Among the subclass of ghost
number-homogeneous squeezed state projectors, we find a single class of
BPZ-real states parametrized by one (nearly) arbitrary function of \kappa. This
class is shown to contain the generalized butterfly states. Furthermore, we
elaborate on sufficient and necessary conditions which have to be fulfilled by
our projectors in order to constitute surface states. As a byproduct we find
that the full star product of N=2 string field theory translates into a
canonically normalized continuous tensor product of Moyal-Weyl products up to
an overall normalization. The divergent factors arising from the translation to
the continuous basis cancel between bosons and fermions in any even dimension.Comment: LaTeX, 1+23 pages, minor improvements, references adde
- …
