1,080 research outputs found

    Entropy Distance: New Quantum Phenomena

    Get PDF
    We study a curve of Gibbsian families of complex 3x3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology and information geometry. This research is motivated by a theory of info-max principles, where we contribute by computing first order optimality conditions of the entropy distance.Comment: 34 pages, 5 figure

    The Non-Trapping Degree of Scattering

    Full text link
    We consider classical potential scattering. If no orbit is trapped at energy E, the Hamiltonian dynamics defines an integer-valued topological degree. This can be calculated explicitly and be used for symbolic dynamics of multi-obstacle scattering. If the potential is bounded, then in the non-trapping case the boundary of Hill's Region is empty or homeomorphic to a sphere. We consider classical potential scattering. If at energy E no orbit is trapped, the Hamiltonian dynamics defines an integer-valued topological degree deg(E) < 2. This is calculated explicitly for all potentials, and exactly the integers < 2 are shown to occur for suitable potentials. The non-trapping condition is restrictive in the sense that for a bounded potential it is shown to imply that the boundary of Hill's Region in configuration space is either empty or homeomorphic to a sphere. However, in many situations one can decompose a potential into a sum of non-trapping potentials with non-trivial degree and embed symbolic dynamics of multi-obstacle scattering. This comprises a large number of earlier results, obtained by different authors on multi-obstacle scattering.Comment: 25 pages, 1 figure Revised and enlarged version, containing more detailed proofs and remark

    Widespread Treponema pallidum Infection in Nonhuman Primates, Tanzania

    Get PDF
    We investigated Treponema pallidum infection in 8 nonhuman primate species (289 animals) in Tanzania during 2015–2017. We used a serologic treponemal test to detect antibodies against the bacterium. Infection was further confirmed from tissue samples of skin-ulcerated animals by 3 independent PCRs (polA, tp47, and TP_0619). Our findings indicate that T. pallidum infection is geographically widespread in Tanzania and occurs in several species (olive baboons, yellow baboons, vervet monkeys, and blue monkeys). We found the bacterium at 11 of 14 investigated geographic locations. Anogenital ulceration was the most common clinical manifestation; orofacial lesions also were observed. Molecular data show that nonhuman primates in Tanzania are most likely infected with T. pallidum subsp. pertenue–like strains, which could have implications for human yaws eradication

    Double exponential stability of quasi-periodic motion in Hamiltonian systems

    Get PDF
    We prove that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially stable in the sense that nearby solutions remain close to the torus for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the torus. We also prove that for an arbitrary small perturbation of a generic integrable Hamiltonian system, there is a set of almost full positive Lebesgue measure of KAM tori which are doubly exponentially stable. Our results hold true for real-analytic but more generally for Gevrey smooth systems

    Symbolic dynamics for the NN-centre problem at negative energies

    Full text link
    We consider the planar NN-centre problem, with homogeneous potentials of degree -\a<0, \a \in [1,2). We prove the existence of infinitely many collisions-free periodic solutions with negative and small energy, for any distribution of the centres inside a compact set. The proof is based upon topological, variational and geometric arguments. The existence result allows to characterize the associated dynamical system with a symbolic dynamics, where the symbols are the partitions of the NN centres in two non-empty sets

    On the Form Factor for the Unitary Group

    Full text link
    We study the combinatorics of the contributions to the form factor of the group U(N) in the large NN limit. This relates to questions about semiclassical contributions to the form factor of quantum systems described by the unitary ensemble.Comment: 35 page

    Approximating multi-dimensional Hamiltonian flows by billiards

    Full text link
    Consider a family of smooth potentials VϵV_{\epsilon}, which, in the limit ϵ0\epsilon\to0, become a singular hard-wall potential of a multi-dimensional billiard. We define auxiliary billiard domains that asymptote, as ϵ0\epsilon\to0 to the original billiard, and provide asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the CrC^{r} norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials which limit to the multi-dimensional close to ellipsoidal billiards, we predict when the separatrix splitting persists for various types of potentials

    Chaotic eigenfunctions in momentum space

    Full text link
    We study eigenstates of chaotic billiards in the momentum representation and propose the radially integrated momentum distribution as useful measure to detect localization effects. For the momentum distribution, the radially integrated momentum distribution, and the angular integrated momentum distribution explicit formulae in terms of the normal derivative along the billiard boundary are derived. We present a detailed numerical study for the stadium and the cardioid billiard, which shows in several cases that the radially integrated momentum distribution is a good indicator of localized eigenstates, such as scars, or bouncing ball modes. We also find examples, where the localization is more strongly pronounced in position space than in momentum space, which we discuss in detail. Finally applications and generalizations are discussed.Comment: 30 pages. The figures are included in low resolution only. For a version with figures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp99-2.htm
    corecore