199 research outputs found

    Thinking and acting differently for sustainable management of the boreal forest

    Get PDF
    Sustainable forest management has replaced sustained yield as the new management strategy for most countries and forest companies. This concept has generated a lot of interest and discussion, and a great deal of effort is being made to modify current forestry practices to be sustainable. In this paper, we argue that the still somewhat vague concept of sustainable forest management calls for a substantial modification in our way of thinking about and practicing forestry. To move toward that goal, we recognize important social and economic challenges to sustainable management and suggest nine essential notions: 1) manage the forest ecosystem as a whole and not in parts nor only for the crop species; 2) conserve a significant proportion of the boreal forest (i.e., at least 12%); 3) practice intensive forestry on a small portion of the land to recover the fibre lost from notions 1 and 2; 4) strive for innovation in thinking and acting; 5) foster research and development to support notion 4; 6) balance regional needs with that of the global community; 7) encourage public participation; 8) consider the impact of substantial change in climate over the next 100 years (or next rotation); and 9) substitute regulations that are adaptive for those that are restrictive. An example of the kind of silviculture that could be used in ecosystem management for the black spruce forest is also discussed

    Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: A modelling approach

    Get PDF
    In the context of partial harvesting, adequately managing post-harvest light conditions are essential to obtain a desired composition of tree species regeneration. The objective of this study was to determine how varying the intensity and spatial pattern of harvest would affect understory light conditions in boreal mixedwood stands of northwestern Quebec using the spatially explicit SORTIE-ND light model. The model was evaluated based on comparisons of observed and predicted light levels in both mapped and un-mapped plots. In mapped plots, reasonably accurate predictions of the overall variation in light levels were obtained, but predictions tended to lack spatial precision. In un-mapped plots, SORTIE-ND accurately predicted stand-level mean GLI (Gap Light Index) under a range of harvest intensities. The model was then used to simulate nine silvicultural treatments based on combinations of three intensities of overstory removal (30%, 45% and 60% of basal area) and three harvest patterns (uniform, narrow strips, large gaps). Simulations showed that increasing overstory removal had less impact on light conditions with uniform harvests, and a more marked effect with more aggregated harvest patterns. Whatever the harvest intensity, uniform cuts almost never created high light conditions (GLI > 50%). Gap cuts, on the other hand, resulted in up to 40% of microsites receiving GLI > 50%. Our results suggest that either a 30% strip or gap cut or a 45–60% uniform partial harvest could be used to accelerate the transition from an aspen dominated composition to a mixedwood stand because both types of cut generate the greatest proportion of moderately low light levels (e.g., 15–40% GLI). These light levels tend to favour an accelerated growth response among shade-tolerant conifers, while preventing excessive recruitment of shade-intolerant species. A better understanding of how spatial patterns of harvest interact with tree removal intensity to affect understory light conditions can provide opportunities for designing silvicultural prescriptions that are tailored to species’ traits and better suited to meet a variety of management objectives

    Increasing partnerships between scientists and forest managers: Lessons from an ongoing interdisciplinary project in Quebec

    Get PDF
    Adaptive management presupposes stronger links between scientists and forest managers in order to adapt research processes and findings to production activities. Partnerships between these two groups are starting to emerge in the forest sector in Quebec. However, local forest managers have not always had the occasion in the past to contribute to research processes. Moreover, scientists have not always had the opportunity to harmonize all their respective research projects ar the local level. This research project was thus aimed ar establishing a link between local forest managers and scientists in order to direct research projects towards local needs and concerns. The purpose of establishing this contact between local forest managers and scientists was to create opportunities for inter-disciplinary research projects. This experiment demonstrated that the roles and attitudes of scientists and forest managers still need to evolve in order to increase the chances for successful partnerships between these two groups. On the one hand, forest managers need to view research (1) as part of their daily activities and (2) as bringing benefit in the long-term. On the other hand scientists must (1) invest time in understanding what the forest managers are doing and (2) consider forest managers as equal partners with useful knowledge and skills in developing the research questions and protocols

    Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests

    Get PDF
    Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation aVect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized

    Urea treatment affects safe rates of seed placed nitrogen in Saskatchewan

    Get PDF
    Non-Peer ReviewedPlacing urea in close proximity to seed can cause seedling damage resulting in poor crop establishment. Plant densities are often well below the optimum, and plants that do emerge can exhibit poor vigor. Several strategies have been developed to reduce risk of seed damage from urea. Restricting the amount that is seed placed, placing urea at a safe distance and placement before or after seeding are effective but may not allow for application of adequate N or increase equipment and operating costs. Recently treatments applied to the urea granule such as Agrotain and polymer coating have been developed to slow the conversion to ammonium. Research suggests that the safe rate of N can be increased by 50% where Agrotain is used and are less clear when polymer coatings are used. To demonstrate how Agrotain and polymer treated urea affect crop establishment and yield, rates of 0, 1, 1.5, 2 and 4 times the recommended safe rate were seed placed at Scott, Swift Current, Canora and Redvers, Saskatchewan. Trials were conducted with wheat at all locations, and canola at Scott. Seed placed untreated urea was used as a check. As well, an alternate option using seed placed untreated urea followed by liquid urea ammonium nitrate dribble banded 20 to 35 days after seeding was investigated. Impact of treatments on plant density varied with rainfall across locations. Sites with lower precipitation after seeding indicated more severe damage to seedlings. Untreated urea placed with the seed had the greatest impact on plant density but, Agrotain and polymer treatments also led to decreases at high N rates. The improvement of Agrotain over untreated urea generally confirmed manufacturer recommendations that safe rates of seed placed urea can be increased by about 50%. The polymer was very effective at reducing damage from seed placed urea, but still generally resulted in fewer plants than side band at 4 times the recommended rate of N. Grain yield responses were also variable across locations. At most sites where plant stand reductions were high yield was also affected. Differences between all treatments were small at N rates up to 2 times the recommended rate but at 4 times, yield was reduced for Agrotain treated and untreated seed placed N. For treatments where liquid dribble band was compared to side banding little difference in yield was observed when soil residual N was high and precipitation was low. A reduction in yield was found when soil N and precipitation were low. Where the N supply from soil was large and precipitation higher, yield of dribble banded crop continued to respond after side banded crops had peaked

    Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests

    Get PDF
    At the landscape scale, one of the key indicators of sustainable forest management is the age-class distribution of stands, since it provides a coarse synopsis of habitat potential, structural complexity, and stand volume, and it is directly modified by timber extraction and wildfire. To explore the consequences of several landscape-scale boreal forest management strategies on age-class structure in the Mauricie region of Quebec, we used spatially explicit simulation modelling. Our study investigated three different harvesting strategies (the one currently practiced and two different strategies to maintain late seral stands) and interactions between fire and harvesting on stand age-class distribution. We found that the legacy of initial forested age structure and its spatial configuration can pose short- (<50 years) to medium-term (150-300 years) challenges to balancing wood supply and ecological objectives. Also, ongoing disturbance by fire, even at relatively long cycles in relation to historic levels, can further constrain the achievement of both timber and biodiversity goals. For example, when fire was combined with management, harvest shortfalls occurred in all scenarios with a fire cycle of 100 years and most scenarios with a fire cycle of 150 years. Even a fire cycle of 500 years led to a reduction in older forest when its maintenance was not a primary constraint. Our results highlight the need to consider the broad-scale effects of natural disturbance when developing ecosystem management policies and the importance of prioritizing objectives when planning for multiple resource use

    Development of integrated ecological standards of sustainable forest management at an operational scale

    Get PDF
    Within Canada, and internationally, an increasing demand that forests be managed to maintain all resources has led to the development of criteria and indicators of sustainable forest management. There is, however, a lack of understanding, at an operational scale, how to evaluate and compare forest management activities to ensure the sustainability of all resources. For example, nationally, many of the existing indicators are too broad to be used directly at a local scale of forest management; provincially, regulations are often too prescriptive and rigid to allow for adaptive management; and forest certification programs, often based largely on public or stake-holder opinion instead of scientific understanding, may be too local in nature to permit a comparison of operations across a biome. At an operational scale indicators must be relevant to forest activities and ecologically integrated. In order to aid decision-makers in the adaptive management necessary for sustainable forest management, two types of indicators are identified: those that are prescriptive to aid in planning forest management and those that are evaluative to be used in monitoring and suggesting improvements. An integrated approach to developing standards based on an ecosystem management paradigm is outlined for the boreal forest where the variability inherent in natural systems is used to define the limits within which forest management is ecologically sustainable. Sustainability thresholds are thus defined by ecosystem response after natural disturbances. For this exercise, standards are proposed for biodiversity, forest productivity via regeneration, soil conservation and aquatic resources. For each of these standards, planning indicators are developed for managing forest conditions while forest values are evaluated by environmental indicators, thus leading to a continuous cycle of improvement. Approaches to developing critical thresholds and corresponding prescriptions are also outlined. In all cases, the scale of evaluation is clearly related to the landscape (or FMU) level while the stand level is used for measurement purposes. In this view the forest should be managed as a whole even though forest interventions are usually undertaken at the stand level

    Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir)

    Get PDF
    We model and compare the biological and financial constraints of four prescriptions that serve as alternatives to conventional clearcutting followed by planting in eastern and western boreal mixedwood stands. These alternative prescriptions for full or partial conifer stocking are (1) reliance on advance regeneration with or without augmentation by fill-planting; (2) understory scarification during a mast year; (3) direct seeding either aerially or with a scarifier-seeder; and (4) underplanting. Our main conclusions concerning the biological constraints are that (1) advance regeneration, mainly of balsam fir in the east and white spruce in the west, requires >26 000 and > 4000 trees/ha (because of different distributions), respectively, to achieve full conifer stocking; (2) reliance on a mast year requires at least 6 m2/ha of mature conifer basal area, but much less if some advance regeneration is present or only moderate stocking is desired; (3) aerial seeding with 35% scarification requires about a half-million seeds/ha to achieve full conifer stocking, while a scarifier-seeder would require only a third of this application rate; and (4) underplanting is constrained to aspen stands with >25% incident light at planting height. In all cases, alternative prescriptions become more feasible if only moderate or minimal stocking is the silvicultural objective. A costing exercise for the four prescriptions in comparison with a clearcut followed by planting shows that reliance on advance regeneration or understory planting are the cheapest alternatives to achieve full or partial conifer stocking. With the exception of full conifer stocking in situations where there is little advance regeneration (and where herbicides can be used), conventional plantations are never the cheapest approach. In such cases, fill planting and use of a scarifier-seeder become viable options. Aerial seeding and reliance on a mast year are the most expensive of the alternatives. We conclude, tentatively, that there is enough conifer basal area in most of the eastern boreal mixedwood of Canada to allow for the use of either or both a mast year and advance regeneration to achieve full or partial conifer stocking. By contrast, in the west conifer basal area will seldom be sufficient for natural seeding, and the density of advance regeneration is likewise often too low. Finally, because of light constraints, understory planting appears to have a much wider applicability in the west than in the east

    A toolkit modeling approach for sustainable forest management planning: Achieving balance between science and local needs

    Get PDF
    To assist forest managers in balancing an increasing diversity of resource objectives, we developed a toolkit modeling approach for sustainable forest management (SFM). The approach inserts a meta-modeling strategy into a collaborative modeling framework grounded in adaptive management philosophy that facilitates participation among stakeholders, decision makers, and local domain experts in the meta-model building process. The modeling team works iteratively with each of these groups to define osential questions, identify data resources, and then determine whether available tools can be applied or adapted, or whether new tools can be rapidly created to fit the need. The desired goal of the process is a linked series of domain-specific models (tools) that balances generalized "top-down" models (i.e., scientific models developed without input from the local system) with case-specific customized "bottom-up" models that are driven primarily by local needs. Information flow between models is organized according to vertical (i.e., between scale) and horizontal (i.e., within scale) dimensions. We illustrate our approach within a 2.1 million hectare forest planning district in central Labrador, a forested landscape where social hnd ecological values receive a higher priority than economic values. However, the focus of this paper is on the process of how SFM modeling tools and concepts can be rapidly assembled and applied in new locations, balancing efficient transfer of science with adaptation to local needs. We use the Labrador case study to illustrate strengths and challenges uniquely associated with a meta-modeling approach to integrated modeling as it fits within the broader collaborative modeling framework. Principle advantages of the approach include the scientific rigor introduced by peer-reviewed models, combined with the adaptability of meta-modeling. A key challenge is the limited transparency of scientific models to different participatory groups. This challenge can be overcome by frequent and substantive two-way communication among different groups at appropriate times in the model-building process, combined with strong leadership that includes strategic choices when assembling the modeling team. The toolkit approach holds promise for extending beyond case studies, without compromising the bottom-up flow of needs and information, to inform SFM planning using the best available science

    Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees

    Get PDF
    Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 +/- 4 days; mean +/- 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 +/- 19 mm (mean +/- SE) during their peak growth than ring-porous and coniferous species (15 +/- 35 mm and 30 +/- 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.Peer reviewe
    corecore