2,199 research outputs found
Bounds on the Probability of Success of Postselected Non-linear Sign Shifts Implemented with Linear Optics
The fundamental gates of linear optics quantum computation are realized by
using single photons sources, linear optics and photon counters. Success of
these gates is conditioned on the pattern of photons detected without using
feedback. Here it is shown that the maximum probability of success of these
gates is typically strictly less than 1. For the one-mode non-linear sign
shift, the probability of success is bounded by 1/2. For the conditional sign
shift of two modes, this probability is bounded by 3/4. These bounds are still
substantially larger than the highest probabilities shown to be achievable so
far, which are 1/4 and 2/27, respectively.Comment: 6 page
Toward fault-tolerant quantum computation without concatenation
It has been known that quantum error correction via concatenated codes can be
done with exponentially small failure rate if the error rate for physical
qubits is below a certain accuracy threshold. Other, unconcatenated codes with
their own attractive features-improved accuracy threshold, local
operations-have also been studied. By iteratively distilling a certain
two-qubit entangled state it is shown how to perform an encoded Toffoli gate,
important for universal computation, on CSS codes that are either
unconcatenated or, for a range of very large block sizes, singly concatenated.Comment: 12 pages, 2 figures, replaced: new stuff on error models, numerical
example for concatenation criteri
A Note on Linear Optics Gates by Post-Selection
Recently it was realized that linear optics and photo-detectors with feedback
can be used for theoretically efficient quantum information processing. The
first of three steps toward efficient linear optics quantum computation (eLOQC)
was to design a simple non-deterministic gate, which upon post-selection based
on a measurement result implements a non-linear phase shift on one mode. Here a
computational strategy is given for finding non-deterministic gates for bosonic
qubits with helper photons. A more efficient conditional sign flip gate is
obtained.Comment: 14 pages. Minor changes for clarit
A two-step MaxLik-MaxEnt strategy to infer photon distribution from on/off measurement at low quantum efficiency
A method based on Maximum-Entropy (ME) principle to infer photon distribution
from on/off measurements performed with few and low values of quantum
efficiency is addressed. The method consists of two steps: at first some
moments of the photon distribution are retrieved from on/off statistics using
Maximum-Likelihood estimation, then ME principle is applied to infer the
quantum state and, in turn, the photon distribution. Results from simulated
experiments on coherent and number states are presented.Comment: 4 figures, to appear in EPJ
Scaling issues in ensemble implementations of the Deutsch-Jozsa algorithm
We discuss the ensemble version of the Deutsch-Jozsa (DJ) algorithm which
attempts to provide a "scalable" implementation on an expectation-value NMR
quantum computer. We show that this ensemble implementation of the DJ algorithm
is at best as efficient as the classical random algorithm. As soon as any
attempt is made to classify all possible functions with certainty, the
implementation requires an exponentially large number of molecules. The
discrepancies arise out of the interpretation of mixed state density matrices.Comment: Minor changes, reference added, replaced with publised versio
On Protected Realizations of Quantum Information
There are two complementary approaches to realizing quantum information so
that it is protected from a given set of error operators. Both involve encoding
information by means of subsystems. One is initialization-based error
protection, which involves a quantum operation that is applied before error
events occur. The other is operator quantum error correction, which uses a
recovery operation applied after the errors. Together, the two approaches make
it clear how quantum information can be stored at all stages of a process
involving alternating error and quantum operations. In particular, there is
always a subsystem that faithfully represents the desired quantum information.
We give a definition of faithful realization of quantum information and show
that it always involves subsystems. This justifies the "subsystems principle"
for realizing quantum information. In the presence of errors, one can make use
of noiseless, (initialization) protectable, or error-correcting subsystems. We
give an explicit algorithm for finding optimal noiseless subsystems. Finding
optimal protectable or error-correcting subsystems is in general difficult.
Verifying that a subsystem is error-correcting involves only linear algebra. We
discuss the verification problem for protectable subsystems and reduce it to a
simpler version of the problem of finding error-detecting codes.Comment: 17 page
Analytic Continuation of Dirichlet Series with Almost Periodic Coefficients
We consider Dirichlet series ζ[subscript g,α](s)=∑[∞ over n=1]g(nα)e[superscript −λ[subscript n]s] for fixed irrational α and periodic functions g. We demonstrate that for Diophantine α and smooth g, the line Re(s) = 0 is a natural boundary in the Taylor series case λ[subscript n] = n, so that the unit circle is the maximal domain of holomorphy for the almost periodic Taylor series ∑[∞ over n=1]g(nα)z[superscript n] . We prove that a Dirichlet series ζ[subscript g,α](s)=∑[∞ over n=1](nα)/n[superscript s] has an abscissa of convergence σ[subscript 0] = 0 if g is odd and real analytic and α is Diophantine. We show that if g is odd and has bounded variation and α is of bounded Diophantine type r, the abscissa of convergence σ[subscript 0] satisfies σ[subscript 0] ≤ 1 − 1/r. Using a polylogarithm expansion, we prove that if g is odd and real analytic and α is Diophantine, then the Dirichlet series ζ[subscript g,α](s) has an analytic continuation to the entire complex plane
Quantum Computing with Very Noisy Devices
In theory, quantum computers can efficiently simulate quantum physics, factor
large numbers and estimate integrals, thus solving otherwise intractable
computational problems. In practice, quantum computers must operate with noisy
devices called ``gates'' that tend to destroy the fragile quantum states needed
for computation. The goal of fault-tolerant quantum computing is to compute
accurately even when gates have a high probability of error each time they are
used. Here we give evidence that accurate quantum computing is possible with
error probabilities above 3% per gate, which is significantly higher than what
was previously thought possible. However, the resources required for computing
at such high error probabilities are excessive. Fortunately, they decrease
rapidly with decreasing error probabilities. If we had quantum resources
comparable to the considerable resources available in today's digital
computers, we could implement non-trivial quantum computations at error
probabilities as high as 1% per gate.Comment: 47 page
- …
