1,685 research outputs found
Functional integral for non-Lagrangian systems
A novel functional integral formulation of quantum mechanics for
non-Lagrangian systems is presented. The new approach, which we call "stringy
quantization," is based solely on classical equations of motion and is free of
any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the
theory. The functionality of the proposed method is demonstrated on several
examples. Special attention is paid to the stringy quantization of systems with
a general A-power friction force . Results for are
compared with those obtained in the approaches by Caldirola-Kanai, Bateman and
Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon
approach are discussed as well.Comment: 14 pages, 7 figures, corrected typo
Theory of spin-orbit coupling in bilayer graphene
Theory of spin-orbit coupling in bilayer graphene is presented. The
electronic band structure of the AB bilayer in the presence of spin-orbit
coupling and a transverse electric field is calculated from first-principles
using the linearized augmented plane wave method implemented in the WIEN2k
code. The first-principles results around the K points are fitted to a
tight-binding model. The main conclusion is that the spin-orbit effects in
bilayer graphene derive essentially from the single-layer spin-orbit coupling
which comes almost solely from the d orbitals. The intrinsic spin-orbit
splitting (anticrossing) around the K points is about 24\mu eV for the
low-energy valence and conduction bands, which are closest to the Fermi level,
similarly as in the single layer graphene. An applied transverse electric field
breaks space inversion symmetry and leads to an extrinsic (also called
Bychkov-Rashba) spin-orbit splitting. This splitting is usually linearly
proportional to the electric field. The peculiarity of graphene bilayer is that
the low-energy bands remain split by 24\mu eV independently of the applied
external field. The electric field, instead, opens a semiconducting band gap
separating these low-energy bands. The remaining two high-energy bands are
spin-split in proportion to the electric field; the proportionality coefficient
is given by the second intrinsic spin-orbit coupling, whose value is 20\mu eV.
All the band-structure effects and their spin splittings can be explained by
our tight-binding model, in which the spin-orbit Hamiltonian is derived from
symmetry considerations. The magnitudes of intra- and interlayer
couplings---their values are similar to the single-layer graphene ones---are
determined by fitting to first-principles results.Comment: 16 pages, 13 figures, 5 tables, typos corrected, published versio
Changing Employment Relations and Governance in the International Auto Industry
In recent years, considerable debate has surrounded the issue of whether a fundamental
transformation of employment relations is underway in both the industrialised and
industrialising countries. Comparative studies at the national or macro-level of
employment relations have been conducted within both an OECD group of countries (see Locke et al 1995) and newly industrialising economies (see Verma et al 1995). To these have been added complementary studies at the industry-level: in steel, telecommunications, banking and automobile manufacturing. These studies have adopted a broader similar analytical framework that focus on five sets of employment practices or issues, as follows:
(1) the way work is organised
(2) the process of skills acquisition and development
(3) the structures and processes of pay and compensation
(4) staffing and employment security arrangements
(5) enterprise governance and labour-management relations issues.
The analytical framework adopted for these studies argues that employment practices are
shaped by features of the external environment and the choices of firms, unions and governments, as well as by the broader institutional context at the industry and firm
levels. The issue of enterprise governance occupies an ambiguous position in that it may
be viewed both as a feature of the external environment (especially where governments
have legislated for certain arrangements) as well as an element in employment relations
practice
The Pauli equation with complex boundary conditions
We consider one-dimensional Pauli Hamiltonians in a bounded interval with
possibly non-self-adjoint Robin-type boundary conditions. We study the
influence of the spin-magnetic interaction on the interplay between the type of
boundary conditions and the spectrum. A special attention is paid to
PT-symmetric boundary conditions with the physical choice of the time-reversal
operator T.Comment: 16 pages, 4 figure
Invariant variational principle for Hamiltonian mechanics
It is shown that the action for Hamiltonian equations of motion can be
brought into invariant symplectic form. In other words, it can be formulated
directly in terms of the symplectic structure without any need to
choose some 1-form , such that , which is not unique
and does not even generally exist in a global sense.Comment: final version; to appear in J.Phys.A; 17 pages, 2 figure
Berry's phase in noncommutative spaces
We introduce the perturbative aspects of noncommutative quantum mechanics.
Then we study the Berry's phase in the framework of noncommutative quantum
mechanics. The results show deviations from the usual quantum mechanics which
depend on the parameter of space/space noncommtativity.Comment: 7 pages, no figur
Modifications of comet materials by the sublimation process: Results from simulation experiments
An active comet like comet Halley loses by sublimation a surface layer of the order of 1 m thickness per perihelion passage. In situ measurements show that water ice is the main constituent which contributes to the gas emission although even more volatile species (CO, NH3, CH4, CO2 etc.) have been identified. Dust particles which were embedded in the ices are carried by the sublimating gases. Measurements of the chemical composition of cometary grains indicate that they are composed of silicates of approximate chondritic composition and refractory carbonaceous material. Comet simulation experiments show that significant modifications of cometary materials occur due to sublimation process in near surface layers which have to be taken into account in order to derive the original state of the material
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment
Background: Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. Methods: We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70–90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Results: Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. Conclusions: The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings
- …
