497 research outputs found
First-order restoration of SU(Nf) x SU(Nf) chiral symmetry with large Nf and Electroweak phase transition
It has been argued by Pisarski and Wilczek that finite temperature
restoration of the chiral symmetry SU(Nf) x SU(Nf) is first-order for Nf >=3.
This type of chiral symmetry with a large Nf may appear in the Higgs sector if
one considers models such as walking technicolor theories. We examine the
first-order restoration of the chiral symmetry from the point of view of the
electroweak phase transition. The strength of the transition is estimated in
SU(2) x U(1) gauged linear sigma model by means of the finite temperature
effective potential at one-loop with the ring improvement. Even if the mass of
the neutral scalar boson corresponding to the Higgs boson is larger than 114
GeV, the first-order transition can be strong enough for the electroweak
baryogenesis, as long as the extra massive scalar bosons (required for the
linear realization) are kept heavier than the neutral scalar boson. Explicit
symmetry breaking terms reduce the strength of the first-order transition, but
the transition can remain strongly first-order even when the masses of pseudo
Nambu-Goldstone bosons become as large as the current lower bound of direct
search experiments.Comment: 18 pages, 18 figures, minor corrections, references adde
Spin-dependent tunneling in modulated structures of (Ga,Mn)As
A model of coherent tunneling, which combines multi-orbital tight-binding
approximation with Landauer-B\"uttiker formalism, is developed and applied to
all-semiconductor heterostructures containing (Ga,Mn)As ferromagnetic layers. A
comparison of theoretical predictions and experimental results on
spin-dependent Zener tunneling, tunneling magnetoresistance (TMR), and
anisotropic magnetoresistance (TAMR) is presented. The dependence of spin
current on carrier density, magnetization orientation, strain, voltage bias,
and spacer thickness is examined theoretically in order to optimize device
design and performance.Comment: 9 pages, 13 figures, submitted to PR
Robustness of a persistent spin helix against a cubic Dresselhaus field in (001) and (110) oriented two-dimensional electron gases
Theory of spin-polarized bipolar transport in magnetic p-n junctions
The interplay between spin and charge transport in electrically and
magnetically inhomogeneous semiconductor systems is investigated theoretically.
In particular, the theory of spin-polarized bipolar transport in magnetic p-n
junctions is formulated, generalizing the classic Shockley model. The theory
assumes that in the depletion layer the nonequilibrium chemical potentials of
spin up and spin down carriers are constant and carrier recombination and spin
relaxation are inhibited. Under the general conditions of an applied bias and
externally injected (source) spin, the model formulates analytically carrier
and spin transport in magnetic p-n junctions at low bias. The evaluation of the
carrier and spin densities at the depletion layer establishes the necessary
boundary conditions for solving the diffusive transport equations in the bulk
regions separately, thus greatly simplifying the problem. The carrier and spin
density and current profiles in the bulk regions are calculated and the I-V
characteristics of the junction are obtained. It is demonstrated that spin
injection through the depletion layer of a magnetic p-n junction is not
possible unless nonequilibrium spin accumulates in the bulk regions--either by
external spin injection or by the application of a large bias. Implications of
the theory for majority spin injection across the depletion layer, minority
spin pumping and spin amplification, giant magnetoresistance, spin-voltaic
effect, biasing electrode spin injection, and magnetic drift in the bulk
regions are discussed in details, and illustrated using the example of a GaAs
based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Mutations in TOP3A Cause a Bloom Syndrome-like Disorder
Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects’ cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis
Systematic decomposition of the neutrinoless double beta decay operator
We discuss the systematic decomposition of the dimension nine neutrinoless double beta decay operator, focusing on mechanisms with potentially small contributions to neutrino mass, while being accessible at the LHC. We first provide a (d = 9 tree-level) complete list of diagrams for neutrinoless double beta decay. From this list one can easily recover all previously discussed contributions to the neutrinoless double beta decay process, such as the celebrated mass mechanism or ¿exotics¿, such as contributions from left-right symmetric models, R-parity violating supersymmetry and leptoquarks. More interestingly, however, we identify a number of new possibilities which have not been discussed in the literature previously. Contact to earlier works based on a general Lorentz-invariant parametrisation of the neutrinoless double beta decay rate is made, which allows, in principle, to derive limits on all possible contributions. We furthermore discuss possible signals at the LHC for mediators leading to the short-range part of the amplitude with one specific example. The study of such contributions would gain particular importance if there were a tension between different measurements of neutrino mass such as coming from neutrinoless double beta decay and cosmology or single beta decay
Spin-polarized Zener tunneling in (Ga,Mn)As
We investigate spin-polarized inter-band tunneling through measurement of
(Ga,Mn)As based Zener tunnel diode. By placing the diode under reverse bias,
electron spin polarization is transferred from the valence band of p-type
(Ga,Mn)As to the conduction band of an adjacent n-GaAs layer. The resulting
current is monitored by injection into a quantum well light emitting diode
whose electroluminescence polarization is found to track the magnetization of
the (Ga,Mn)As layer as a function of both temperature and magnetic field.Comment: 11 pages, 4 figures. Submitted, Physical Review B15 Rapid
Communication
All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas
A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients
- …
