416 research outputs found
Extracting chemical energy by growing disorder: Efficiency at maximum power
We consider the efficiency of chemical energy extraction from the environment
by the growth of a copolymer made of two constituent units in the
entropy-driven regime. We show that the thermodynamic nonlinearity associated
with the information processing aspect is responsible for a branching of the
system properties such as power, speed of growth, entropy production, and
efficiency, with varying affinity. The standard linear thermodynamics argument
which predicts an efficiency of 1/2 at maximum power is inappropriate because
the regime of maximum power is located either outside of the linear regime or
on a separate bifurcated branch, and because the usual thermodynamic force is
not the natural variable for this optimization.Comment: 6 pages, 4 figure
Diffusion Enhances Chirality Selection
Diffusion effect on chirality selection in a two-dimensional
reaction-diffusion model is studied by the Monte Carlo simulation. The model
consists of achiral reactants A which turn into either of the chiral products,
R or S, in a solvent of chemically inactive vacancies V. The reaction contains
the nonlinear autocatalysis as well as recycling process, and the chiral
symmetry breaking is monitored by an enantiomeric excess .
Without dilution a strong nonlinear autocatalysis ensures chiral symmetry
breaking. By dilution, the chiral order decreases, and the racemic state
is recovered below the critical concentration . Diffusion effectively
enhances the concentration of chiral species, and decreases as the
diffusion coefficient increases. The relation between and for a
system with a finite fits rather well to an interpolation formula between
the diffusionless(D=0) and homogeneous () limits.Comment: 7 pages, 6 figure
Reduction of spurious velocity in finite difference lattice Boltzmann models for liquid - vapor systems
The origin of the spurious interface velocity in finite difference lattice
Boltzmann models for liquid - vapor systems is related to the first order
upwind scheme used to compute the space derivatives in the evolution equations.
A correction force term is introduced to eliminate the spurious velocity. The
correction term helps to recover sharp interfaces and sets the phase diagram
close to the one derived using the Maxwell construction.Comment: 22 pages, 10 figures (submitted to International Journal of Modern
Physics C- Physics and Computers
The dynamics of dissipative multi-fluid neutron star cores
We present a Newtonian multi-fluid formalism for superfluid neutron star
cores, focussing on the additional dissipative terms that arise when one takes
into account the individual dynamical degrees of freedom associated with the
coupled "fluids". The problem is of direct astrophysical interest as the nature
of the dissipative terms can have significant impact on the damping of the
various oscillation modes of the star and the associated gravitational-wave
signatures. A particularly interesting application concerns the
gravitational-wave driven instability of f- and r-modes. We apply the developed
formalism to two specific three-fluid systems: (i) a hyperon core in which both
Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks
in the colour-flavour-locked phase in which a population of neutral K^0 kaons
is present. The formalism is, however, general and can be applied to other
problems in neutron-star dynamics (such as the effect of thermal excitations
close to the superfluid transition temperature) as well as laboratory
multi-fluid systems.Comment: RevTex, no figure
Total Chiral Symmetry Breaking during Crystallization: Who needs a "Mother Crystal"?
Processes that can produce states of broken chiral symmetry are of particular
interest to physics, chemistry and biology. Chiral symmetry breaking during
crystallization of sodium chlorate occurs via the production of secondary
crystals of the same handedness from a single "mother crystal" that seeds the
solution. Here we report that a large and "symmetric" population of D- and
L-crystals moves into complete chiral purity disappearing one of the
enantiomers. This result shows: (i) a new symmetry breaking process
incompatible with the hypothesis of a single "mother crystal"; (ii) that
complete symmetry breaking and chiral purity can be achieved from an initial
system with both enantiomers. These findings demand a new explanation to the
process of total symmetry breaking in crystallization without the intervention
of a "mother crystal" and open the debate on this fascinating phenomenon. We
present arguments to show that our experimental data can been explained with a
new model of "complete chiral purity induced by nonlinear autocatalysis and
recycling".Comment: 5 pages, 4 figures, Added reference
Homochiral growth through enantiomeric cross-inhibition
The stability and conservation properties of a recently proposed
polymerization model are studied. The achiral (racemic) solution is linearly
unstable once the relevant control parameter (here the fidelity of the
catalyst) exceeds a critical value. The growth rate is calculated for different
fidelity parameters and cross-inhibition rates. A chirality parameter is
defined and shown to be conserved by the nonlinear terms of the model. Finally,
a truncated version of the model is used to derive a set of two ordinary
differential equations and it is argued that these equations are more realistic
than those used in earlier models of that form.Comment: 20 pages, 6 figures, Orig. Life Evol. Biosph. (accepted
Mirror symmetry breaking as a problem in dynamical critical phenomena
The critical properties of the Frank model of spontaneous chiral synthesis
are discussed by applying results from the field theoretic renormalization
group (RG). The long time and long wavelength features of this microscopic
reaction scheme belong to the same universality class as multi-colored directed
percolation processes. Thus, the following RG fixed points (FP) govern the
critical dynamics of the Frank model for d<4: one unstable FP that corresponds
to complete decoupling between the two enantiomers, a saddle-point that
corresponds to symmetric interspecies coupling, and two stable FPs that
individually correspond to unidirectional couplings between the two chiral
molecules. These latter two FPs are associated with the breakdown of mirror or
chiral symmetry. In this simplified model of molecular synthesis, homochirality
is a natural consequence of the intrinsic reaction noise in the critical
regime, which corresponds to extremely dilute chemical systems.Comment: 9 pages, 3 figure
Non-equilibrium Thermodynamics: Structural Relaxation, Fictive temperature and Tool-Narayanaswamy phenomenology in Glasses
Starting from the second law of thermodynamics applied to an isolated system
consisting of the system surrounded by an extremely large medium, we formulate
a general non-equilibrium thermodynamic description of the system when it is
out of equilibrium. We then apply it to study the structural relaxation in
glasses and establish the phenomenology behind the concept of the fictive
temperature and of the empirical Tool-Narayanaswamy equation on firmer
theoretical foundation.Comment: 20 pages, 1 figur
Effective dynamics of a nonabelian plasma out of equilibrium
Starting from kinetic theory, we obtain a nonlinear dissipative formalism
describing the nonequilibrium evolution of scalar colored particles coupled
selfconsistently to nonabelian classical gauge fields. The link between the
one-particle distribution function of the kinetic description and the variables
of the effective theory is determined by extremizing the entropy production.
This method does not rely on the usual gradient expansion in fluid dynamic
variables, and therefore the resulting effective theory can handle situations
where these gradients (and hence the momentum-space anisotropies) are expected
to be large. The formalism presented here, being computationally less demanding
than kinetic theory, may be useful as a simplified model of the dynamics of
color fields during the early stages of heavy ion collisions and in phenomena
related to parton energy loss.Comment: 20 two-column pages, 2 figures. v3: minor changes. Accepted for
publication in Phys. Rev.
Progressive breakdown dynamics and entropy production in ultrathin SiO2 gate oxides
The progressive breakdown of ultrathin (≈2nm) SiO2 gate oxides subjected to constant electrical stress is investigated using a simple equivalent circuit model. It is shown how the interplay among series, parallel, and filamentary conductances that represent the breakdown path and its surroundings leads under certain hypothesis to a sigmoidal current-time characteristic compatible with the experimental observations. The dynamical properties of the breakdown trajectories are analyzed in terms of the logistic potential function, the Lyapunov exponent, and the system's attractor. It is also shown that the current evolution is compatible with Prigogine's minimum entropy production principle
- …
