3,254 research outputs found
Matter in Toy Dynamical Geometries
One of the objectives of theories describing quantum dynamical geometry is to
compute expectation values of geometrical observables. The results of such
computations can be affected by whether or not matter is taken into account. It
is thus important to understand to what extent and to what effect matter can
affect dynamical geometries. Using a simple model, it is shown that matter can
effectively mold a geometry into an isotropic configuration. Implications for
"atomistic" models of quantum geometry are briefly discussed.Comment: 8 pages, 1 figure, paper presented at DICE 200
The Free Particle in Deformed Special Relativity
The phase space of a classical particle in DSR contains de Sitter space as
the space of momenta. We start from the standard relativistic particle in five
dimensions with an extra constraint and reduce it to four dimensional DSR by
imposing appropriate gauge fixing. We analyze some physical properties of the
resulting theories like the equations of motion, the form of Lorentz
transformations and the issue of velocity. We also address the problem of the
origin and interpretation of different bases in DSR.Comment: 15 page
Experimental Simulation of Helium Discharge into the LHC Tunnel
The LHC cryogenic system contains about 100 tons of liquid helium. The highest amount of helium is located in the magnet cold mass (about 58 tons @ 1.9 K, 0.13 MPa), in the QRL supply header C (about 26 tons @ 4.6 K, 0.36 MPa) and in the ring line (about 0.7 tons 290 K, 2 MPa). The rupture of header C is one of the failures leading to the worst scenario of helium discharge into the tunnel. To investigate the consequences of this failure an experiment has been performed. This paper presents the layout of the test set-up and compares the experimental results with calculated data
Modeling the functional genomics of autism using human neurons.
Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD
Accurate quantification of selenoproteins in human plasma/serum by isotope dilution ICP-MS : focus on selenoprotein P
Acknowledgements The research leading to these results was funded by the EMRP Joint Research Project “Metrology for metalloproteins” (HLT-05 2012). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.Peer reviewedPostprin
ELEVATED LEVELS OF PLATELETS AND MDM2 EXPRESSION ARE CONTRIB-UTING FACTORS TO FACILITATING THE METASTASIS OF OSTEOSARCOMA
poster abstractOsteosarcoma (OS) is the most common form of primary bone cancer and the 6th leading cause of cancer in pediatric patients. A chart review of OS patients treated at this institution suggests that a high platelet count at di-agnosis is significantly (p=0.023) and inversely associated with the first year of survival. As the effects of platelet interaction with OS have been exten-sively researched and suggest that platelets may facilitate tumor metastasis, and the most important prognostic factor for OS patient survival is metasta-sis to the lungs, we hypothesized that platelets increase metastasis to the lungs and reduce survival. Therefore, we sought to determine whether in-creasing platelet numbers in a well characterized OS mouse model would de-crease survival and/or increase metastasis to the lungs. We found that thrombopoietin (TPO) treated mice, had increased platelet numbers, died earlier than placebo treated controls, and that lungs from TPO treated mice contained a small number of large tumor cells (most metastatic lesions were 2-4 cells), whereas lungs from placebo treated controls showed no signs of metastases. Next, an OS tissue microarray (TMA) was built from OS patients seen at our institution over the past 10 years. Mdm2, p53, TPO, and c-mpl expression were evaluated by immunohistochemical (IHC) staining followed by quantitation using the Aperio Imaging system and analysis software. C-mpl (TPO receptor) expression was higher in the metastatic than the primary tumors, suggesting that platelets may contribute to the metastasis of OS. Elevated levels of Mdm2 correlated with metastasis and lower levels of p53, as detected by IHC. In conclusion, both the mouse model and the human OS data were similar, suggesting that both platelets and Mdm2 promote metas-tases in OS
Dynamics and chemistry of vortex remnants in late Arctic spring 1997 and 2000: Simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS)
High-resolution simulations of the chemical composition of the Arctic stratosphere during late spring 1997 and 2000 were performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The simulations were performed for the entire northern hemisphere on two isentropic levels 450 K (~18 km) and 585 K (~24 km).<br> <br> The spatial distribution and the lifetime of the vortex remnants formed after the vortex breakup in May 1997 display different behavior above and below 20 km. Above 20 km, vortex remnants propagate southward (up to 40°N) and are "frozen in'' in the summer circulation without significant mixing. Below 20 km the southward propagation of the remnants is bounded by the subtropical jet. Their lifetime is shorter by a factor of 2 than that above 20 km, owing to significant stirring below this altitude. The behavior of vortex remnants formed in March 2000 is similar but, due to an earlier vortex breakup, dominated during the first 6 weeks after the vortex breakup by westerly winds, even above 20 km.<br> <br> Vortex remnants formed in May 1997 are characterized by large mixing ratios of HCl indicating negligible, halogen-induced ozone loss. In contrast, mid-latitude ozone loss in late boreal spring 2000 is dominated, until mid-April, by halogen-induced ozone destruction within the vortex remnants, and subsequent transport of the ozone-depleted polar air masses (dilution) into the mid-latitudes. By varying the intensity of mixing in CLaMS, the impact of mixing on the formation of ClONO<sub>2</sub> and ozone depletion is investigated. We find that the photochemical decomposition of HNO<sub>3</sub> and not mixing with NO<sub>x</sub>-rich mid-latitude air is the main source of NO<sub>x</sub> within the vortex remnants in March and April 2000. Ozone depletion in the remnants is driven by ClO<sub>x</sub> photolytically formed from ClONO<sub>2</sub>. At the end of May 1997, the halogen-induced ozone deficit at 450 K poleward of 30°N amounts to ~12% with ~10% in the polar vortex and ~2% in well-isolated vortex remnants after the vortex breakup
Nonlinear vertical oscillations of a particle in a sheath of a rf discharge
A new simple method to measure the spatial distribution of the electric field
in the plasma sheath is proposed. The method is based on the experimental
investigation of vertical oscillations of a single particle in the sheath of a
low-pressure radio-frequency discharge. It is shown that the oscillations
become strongly nonlinear and secondary harmonics are generated as the
amplitude increases. The theory of anharmonic oscillations provides a good
qualitative description of the data and gives estimates for the first two
anharmonic terms in an expansion of the sheath potential around the particle
equilibrium.Comment: 11 pages, 4 figure
- …
