572 research outputs found
Toward a descriptive model of solar particles in the heliosphere
During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made
Significant initial results from the environmental measurements experiment on ATS-6
The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field
Explorer 45 (S 3-A) observations of the magnetosphere and magnetopause during the 4-5 August 1972, magnetic storm period
The Explorer 45 satellite performed extensive field and particle measurements in the heart of the magnetosphere during the double magnetic storm period of August 4-5, 1972. Both ground level magnetic records and the magnetic field deformations measured along the orbit by the satellite indicated the existence of only a moderate ring current. This was confirmed by the measurements of the total proton energy density less than those observed during the December 1971 and June 1972 magnetic storms. The plasmapause in the noon quadrant was eroded continuously from the onset of the first storm at the beginning of August 4 to an altitude below L = 2.07 at about 18 hours on August 5. During the orbit containing the second sudden commencement a large amount of low frequency electric and magnetic field noise was encountered throughout the entire orbit. A noteworthy observation during this orbit was the contraction of the magnetopause to distances inside the satellite at L = 5.2
My journey in the Nurse Faculty Leadership Academy (NFLA)
Fostering growth in areas of academic leadership by the use of Kouzes\u27 and Posner\u27s leadership model of Five Practices of Exemplary Leadership through the Nurse Faculty Leadership Academy
Transport of small anionic and neutral solutes through chitosan membranes: Dependence on cross-linking and chelation of divalent cations
Chitosan membranes were prepared by solvent casting and cross-linked with glutaraldehyde at several ratios
under homogeneous conditions. The cross-linking degree, varying from 0 to 20%, is defined as the ratio between
the total aldehyde groups and the amine groups of chitosan. Permeability experiments were conducted using a
side-by-side diffusion cell to determine the flux of small molecules of similar size but with different chemical
moieties, either ionized (benzoic acid, salicylic acid, and phthalic acid) or neutral (2-phenylethanol) at physiological
pH. The permeability of the different model molecules revealed to be dependent on the affinity of those structurally
similar molecules to chitosan. The permeability of the salicylate anion was significantly enhanced by the presence
of metal cations commonly present in biological fluids, such as calcium and magnesium, but remained unchanged
for the neutral 2-phenylethanol. This effect could be explained by the chelation of metal cations on the amine
groups of chitosan, which increased the partition coefficient. The cross-linking degree was also correlated with
the permeability and partition coefficient. The change in the permeation properties of chitosan to anionic solutes
in the presence of these metallic cations is an important result and should be taken into consideration when trying
to make in vitro predictions of the drug release from chitosan-based controlled release systems
Recommended from our members
POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers
The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery
Thin Polymer Brush Decouples Biomaterial's Micro-/Nano-Topology and Stem Cell Adhesion
Surface morphology and chemistry of polymers used as biomaterials, such as tissue engineering scaffolds, have a strong influence on the adhesion and behavior of human mesenchymal stem cells. Here we studied semicrystalline poly(ε-caprolactone) (PCL) substrate scaffolds, which exhibited a variation of surface morphologies and roughness originating from different spherulitic superstructures. Different substrates were obtained by varying the parameters of the thermal processing, i.e. crystallization conditions. The cells attached to these polymer substrates adopted different morphologies responding to variations in spherulite density and size. In order to decouple substrate topology effects on the cells, sub-100 nm bio-adhesive polymer brush coatings of oligo(ethylene glycol) methacrylates were grafted from PCL and functionalized with fibronectin. On surfaces featuring different surface textures, dense and sub-100 nm thick brush coatings determined the response of cells, irrespective to the underlying topology. Thus, polymer brushes decouple substrate micro-/nano-topology and the adhesion of stem cells
Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center
The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk
Levodopa-Induced Dyskinesia Is Associated with Increased Thyrotropin Releasing Hormone in the Dorsal Striatum of Hemi-Parkinsonian Rats
Background
Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition.
Methodology/Principal Findings
Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes.
Conclusions/Significance
TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.Morris K. Udall Center for Excellence in Parkinson’s Research at MGH/MITNational Institutes of Health (U.S.) (NIH NS38372)American Parkinson Disease Association, Inc.University of Alabama at BirminghamMassachusetts General HospitalNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIDDK/NIH grant R01 DK58148)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NINDS/NIH grant NS045231)Stanley H. and Sheila G. Sydney FundMichael J. Fox Foundation for Parkinson's Researc
- …
