790 research outputs found
The role of quasars in galaxy formation
We discuss evidence that quasars, and more generally radio jets, may have
played an active role in the formation stage of galaxies by inducing star
formation, i.e. through positive feedback. This mechanism first proposed in the
70's has been considered as anecdotic until now, contrary to the opposite
effect that is generally put forward, the quenching of star formation in
massive galaxies to explain the galaxy bimodality, downsizing and the universal
black hole mass over bulge stellar mass ratio. This suggestion is based on the
recent discovery of an ultra-luminous infrared galaxies, i.e. an extreme
starburst, which appears to be triggered by a radio jet from the QSO
HE0450-2958 at z=0.2863, together with the finding in several systems of an
offset between molecular gas and quasars, which may be explained by the
positive feedback effect of radio jets on their local environment.Comment: Invited talk, to appear in the Proceedings of the IAU Symposium 267,
"Co-Evolution of Central Black Holes and Galaxies", B.M. Peterson, R.S.
Somerville, T. Storchi-Bergmann, eds., in press (8 pages, 3 figures
The Accuracy of Morphological Decomposition of Active Galactic Nucleus Host Galaxies
In order to assess the accuracy with which we can determine the morphologies
of AGN host galaxies, we have simulated more than 50,000 ACS images of galaxies
with z < 1.25, using image and noise properties appropriate for the GOODS
survey. We test the effect of central point-source brightness on host galaxy
parameter recovery with a set of simulated AGN host galaxies made by adding
point sources to the centers of normal galaxies. We extend this analysis and
also quantify the recovery of intrinsic morphological parameters of AGN host
galaxies with a set of fully simulated inactive and AGN host galaxies.
We can reliably separate good from poor fit results using a combination of
reasonable error cuts, in the regime where L_{host}:L_{PS} > 1:4. We give
quantitative estimates of parameter errors as a function of
host-to-point-source ratio. In general, we separate host and point-source
magnitudes reliably at all redshifts; point sources are well recovered more
than 90% of the time, although spurious detection of central point sources can
be as high as 25% for bulge-dominated sources. We find a general correlation
between Sersic index and intrinsic bulge-to-total ratio, such that a host
galaxy with Sersic n < 1.5 generally has at least 80% of its light from a disk
component. Likewise, "bulge-dominated" galaxies with n > 4 typically derive at
least 70% of their total host galaxy light from a bulge, but this number can be
as low as 55%. Single-component Sersic fits to an AGN host galaxy are
statistically very reliable to z < 1.25 (for ACS survey data like ours). In
contrast, two-component fits involving separate bulge and disk components tend
to over-estimate the bulge fraction by ~10%, with uncertainty of order 50%.Comment: 45 pages, 20 figures, submitted to ApJ ; Accepted Version --
additions to introduction and conclusions; title changed, was "Simulations of
AGN Host Galaxy Morphologies
Linear Cosmological Structure Limits on Warm Dark Matter
I consider constraints from observations on a cutoff scale in clustering due
to free streaming of the dark matter in a warm dark matter cosmological model
with a cosmological constant. The limits are derived in the framework of a
sterile neutrino warm dark matter universe, but can be applied to gravitinos
and other models with small scale suppression in the linear matter power
spectrum. With freedom in all cosmological parameters including the free
streaming scale of the sterile neutrino dark matter, limits are derived using
observations of the fluctuations in the cosmic microwave background, the 3D
clustering of galaxies and 1D clustering of gas in the Lyman-alpha (Ly-alpha)
forest in the Sloan Digital Sky Survey (SDSS), as well as the Ly-alpha forest
in high-resolution spectroscopic observations. In the most conservative case,
using only the SDSS main-galaxy 3D power-spectrum shape, the limit is m_s >
0.11 keV; including the SDSS Ly-alpha forest, this limit improves to m_s > 1.7
keV. More stringent constraints may be placed from the inferred matter power
spectrum from high-resolution Ly-alpha forest observations, which has
significant systematic uncertainties; in this case, the limit improves to m_s >
3.0 keV (all at 95% CL).Comment: 6 pages, 4 figures; v2: matches PRD version, with note added
regarding astro-ph/060243
Keplerian Motion of Broad-Line Region Gas as Evidence for Supermassive Black Holes in Active Galactic Nuclei
Emission-line variability data on NGC 5548 argue strongly for the existence
of a mass of order 7 x 10^7 solar masses within the inner few light days of the
nucleus in the Seyfert 1 galaxy NGC 5548. The time-delayed response of the
emission lines to continuum variations is used to infer the size of the
line-emitting region, and these determinations are combined with measurements
of the Doppler widths of the variable line components to estimate a virial
mass. The data for several different emission lines spanning an order of
magnitude in distance from the central source show the expected V proportional
to r^{-1/2} correlation and are consistent with a single value for the mass.Comment: 9 pages, 2 Figures. accepted by ApJ Letter
Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation
Emission-line variability data for Seyfert 1 galaxies provide strong evidence
for the existence of supermassive black holes in the nuclei of these galaxies,
and that the line-emitting gas is moving in the gravitational potential of that
black hole. The time-delayed response of the emission lines to continuum
variations is used to infer the size of the line-emitting region, which is then
combined with measurements of the Doppler widths of the variable line
components to estimate a virial mass. In the case of the best-studied galaxy,
NGC 5548, various emission lines spanning an order of magnitude in distance
from the central source show the expected velocity proportional to inverse
square root of the distance correlation between distance and line width, and
are thus consistent with a single value for the mass. Two other Seyfert
galaxies, NGC 7469 and 3C 390.3, show a similar relationship. We compute the
ratio of luminosity to mass for these three objects and the narrow-line Seyfert
1 galaxy NGC 4051 and find that that the gravitational force on the
line-emitting gas is much stronger than radiation pressure. These results
strongly support the paradigm of gravitationally bound broad emission-line
region clouds.Comment: 10 pages, 2 figures, Accepted for publication in Astrophysical
Journal Letter
The structure of the central disk of NGC 1068: a clumpy disk model
NGC 1068 is one of the best studied Seyfert II galaxies, for which the
blackhole mass has been determined from the Doppler velocities of water maser.
We show that the standard -disk model of NGC 1068 gives disk mass
between the radii of 0.65 pc and 1.1 pc (the region from which water maser
emission is detected) to be about 7x10 M (for ), more
than four times the blackhole mass, and a Toomre Q-parameter for the disk is
0.001. This disk is therefore highly self-gravitating and is subject to
large-amplitude density fluctuations. We conclude that the standard
-viscosity description for the structure of the accretion disk is
invalid for NGC 1068.
In this paper we develop a new model for the accretion disk. The disk is
considered to be composed of gravitationally bound clumps; accretion in this
clumped disk model arises because of gravitational interaction of clumps with
each other and the dynamical frictional drag exerted on clumps from the stars
in the central region of the galaxy. The clumped disk model provides a
self-consistent description of the observations of NGC 1068. The computed
temperature and density are within the allowed parameter range for water maser
emission, and the rotational velocity in the disk falls off as .Comment: To appear in Ap
Thermal evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos
We analyze the processes relevant for star formation in a model with dark
matter in the form of sterile neutrinos. Sterile neutrino decays produce an
X-ray background radiation that has a two-fold effect on the collapsing clouds
of hydrogen. First, the X-rays ionize the gas and cause an increase in the
fraction of molecular hydrogen, which makes it easier for the gas to cool and
to form stars. Second, the same X-rays deposit a certain amount of heat, which
could, in principle, thwart the cooling of gas. We find that, in all the cases
we have examined, the overall effect of sterile dark matter is to facilitate
the cooling of gas. Hence, we conclude that dark matter in the form of sterile
neutrinos can help the early collapse of gas clouds and the subsequent star
formation.Comment: aastex, 31 pages, 4 figures; one figure and some references added,
minor changes in the text; to appear in Astrophysical Journa
Star Captures by Quasar Accretion Disks: A Possible Explanation of the M-sigma Relation
A new theory of quasars is presented in which the matter of thin accretion
disks around black holes is supplied by stars that plunge through the disk.
Stars in the central part of the host galaxy are randomly perturbed to highly
radial orbits, and as they repeatedly cross the disk they lose orbital energy
by drag, eventually merging into the disk. Requiring the rate of stellar mass
capture to equal the mass accretion rate into the black hole, a relation
between the black hole mass and the stellar velocity dispersion is predicted of
the form M_{BH} \propto sigma_*^{30/7}. The normalization depends on various
uncertain parameters such as the disk viscosity, but is consistent with
observation for reasonable assumptions. We show that a seed central black hole
in a newly formed stellar system can grow at the Eddington rate up to this
predicted mass via stellar captures by the accretion disk. Once this mass is
reached, star captures are insufficient to maintain an Eddington accretion
rate, and the quasar may naturally turn off as the accretion switches to a
low-efficiency advection mode. The model provides a mechanism to deliver mass
to the accretion disk at small radius, probably solving the problem of
gravitational instability to star formation in the disk at large radius. We
note that the matter from stars that is incorporated to the disk has an average
specific angular momentum that is very small or opposite to that of the disk,
and discuss how a rotating disk may be maintained as it captures this matter if
a small fraction of the accreted mass comes from stellar winds that form a disk
extending to larger radius. We propose several observational tests and
consequences of this theory.Comment: submitted to Ap
The Black Hole to Bulge Mass Relation in Active Galactic Nuclei
The masses of the central black holes in Active Galactic Nuclei (AGNs) can be
estimated using the broad emission-lines as a probe of the virial mass. Using
reverberation mapping to determine the size of the Broad Line Region (BLR) and
the width of the variable component of the line profile H line it is
possible to find quite accurate virial mass estimates for AGNs with adequate
data. Compiling a sample of AGNs with reliable central masses and bulge
magnitudes we find an average black-hole-to-bulge mass ratio of 0.0003, a
factor of 20 less than the value found for normal galaxies and for bright
quasars. This lower ratio is more consistent with the back hole mass density
predicted from quasar light, and is similar to the central black hole/bulge
mass ratio in our Galaxy. We argue that the black hole/bulge mass ratio
actually has a significantly larger range than indicated by mssive black holes
detected in normal galaxies (using stellar dynamics) and in bright quasars,
which may be biased towards large black holes. We derive a scenario of black
hole growth that explains the observed distribution.Comment: 12 pages LaTeX, including 2 revised figures, revised table. Revised
version to be published in the Astrophysical Journal (Letters) Ap.J.Lett. 51
Do Globular Clusters Harbor Black Holes?
It has been firmly established that there exists a tight correlation between
the central black hole mass and velocity dispersion (or luminosity) of
elliptical galaxies, ``pseudobulges'' and bulges of galaxies, although the
nature of this correlation still remains unclear. In this letter, we explore
the possibility of extrapolating such a correlation to less massive, spherical
systems like globular clusters. In particular, motivated by the apparent
success in globular cluster M15, we present an estimate of the central black
hole mass for a number of globular clusters with available velocity dispersion
in the literature.Comment: 6 pages, 2 figures, 1 table; accepted for publication in CJA
- …
