47 research outputs found
Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction
Immediate assessment of coronary microcirculation during treatment of ST elevation myocardial infarction (STEMI) may facilitate patient stratification for targeted treatment algorithms. Use of pressure-wire to measure the index of microcirculatory resistance (IMR) is possible but has inevitable practical restrictions. We aimed to develop and validate angiography-derived index of microcirculatory resistance (IMRangio) as a novel and pressure-wire-free index to facilitate assessment of the coronary microcirculation. 45 STEMI patients treated with primary percutaneous coronary intervention (pPCI) were enrolled. Immediately before stenting and at completion of pPCI, IMR was measured within the infarct related artery (IRA). At the same time points, 2 angiographic views were acquired during hyperaemia to measure quantitative flow ratio (QFR) from which IMRangio was derived. In a subset of 15 patients both IMR and IMRangio were also measured in the non-IRA. Patients underwent cardiovascular magnetic resonance imaging (CMR) at 48 h for assessment of microvascular obstruction (MVO). IMRangio and IMR were significantly correlated (rho: 0.85, p < 0.001). Both IMR and IMRangio were higher in the IRA rather than in the non-IRA (p = 0.01 and p = 0.006, respectively) and were higher in patients with evidence of clinically significant MVO (> 1.55% of left ventricular mass) (p = 0.03 and p = 0.005, respectively). Post-pPCI IMRangio presented and area under the curve (AUC) of 0.96 (CI95% 0.92-1.00, p < 0.001) for prediction of post-pPCI IMR > 40U and of 0.81 (CI95% 0.65-0.97, p < 0.001) for MVO > 1.55%. IMRangio is a promising tool for the assessment of coronary microcirculation. Assessment of IMR without the use of a pressure-wire may enable more rapid, convenient and cost-effective assessment of coronary microvascular function
Ultrasound- Versus Fluoroscopy-Guided Strategy for Transfemoral Transcatheter Aortic Valve Replacement Access: A Systematic Review and Meta-Analysis
Background:Access site vascular and bleeding complications remain problematic for patients undergoing transcatheter aortic valve replacement (TAVR). Ultrasound-guided transfemoral access approach has been suggested as a technique to reduce access site complications, but there is wide variation in adoption in TAVR. We performed a systematic review and meta-analysis to compare access site vascular and bleeding complications according to the Valve Academic Research Consortium-2 classification following the use of either ultrasound- or conventional fluoroscopy-guided transfemoral TAVR access.Methods:Medline, Embase, Web of Science, and The Cochrane Library were searched to November 2020 for studies comparing ultrasound- and fluoroscopy-guided access for transfemoral TAVR. A priori defined primary outcomes were extracted: (1) major, (2) minor, and (3) major and minor (total) access site vascular complications and (4) life-threatening/major, (5) minor, and (6) life-threatening, major, and minor (total) access site bleeding complications.Results:Eight observational studies (n=3875) were included, with a mean participant age of 82.8 years, STS score 5.81, and peripheral vascular disease in 23.5%. An ultrasound-guided approach was significantly associated with a reduced risk of total (Mantel-Haenszel odds ratio [MH-OR], 0.50 [95% CI, 0.35–0.73]), major (MH-OR, 0.51 [95% CI, 0.35–0.74]), and minor (MH-OR, 0.59 [95% CI, 0.38–0.91]) access site vascular complications. Ultrasound guidance was also significantly associated with total access site bleeding complications (MH-OR, 0.59 [95% CI, 0.39–0.90]). The association remained significant in sensitivity analyses of maximally adjusted minor and total vascular access site complications (MH-OR, 0.51 [95% CI, 0.29–0.90]; MH-OR, 0.44 [95% CI, 0.20–0.99], respectively).Conclusions:In the absence of randomized studies, our data suggests a potential benefit for ultrasound guidance to obtain percutaneous femoral access in TAVR
Mechanism of Human Papillomavirus Binding to Human Spermatozoa and Fertilizing Ability of Infected Spermatozoa
Human papillomaviruses (HPVs) are agents of the most common sexually transmitted diseases in females and males. Precise data about the presence, mechanism of infection and clinical significance of HPV in the male reproductive tract and especially in sperm are not available. Here we show that HPV can infect human sperm, it localizes at the equatorial region of sperm head through interaction between the HPV capsid protein L1 and syndecan-1. Sperm transfected with HPV E6/E7 genes and sperm exposed to HPV L1 capsid protein are capable to penetrate the oocyte and transfer the virus into oocytes, in which viral genes are then activated and transcribed. These data show that sperm might function as vectors for HPV transfer into the oocytes, and open new perspectives on the role of HPV infection in males and are particularly intriguing in relation to assisted reproduction techniques
Constructing custom-made radiotranscriptomic signatures of vascular inflammation from routine CT angiograms: a prospective outcomes validation study in COVID-19
Background Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19.Methods For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes.Findings Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2middot97 [95% CI 1middot43-6middot27], p=0middot0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1middot89 [95% CI 1middot17-3middot20] per SD, p=0middot012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [>= 6middot99] vs low [<6middot99] C19-RS; hazard ratio [HR] 3middot31 [95% CI 1middot49-7middot33], p=0middot0033; and 2middot58 [1middot10-6middot05], p=0middot028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8middot24 (95% CI 2middot16-31middot36, p=0middot0019) in patients who received no dexamethasone treatment, but 2middot27 (0middot69-7middot55, p=0middot18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0middot61, p=0middot00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways.Interpretation Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. Funding Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.Copyright (c) 2022 The Author(s). Published by Elsevier Ltd.This is an Open Access article under the CC BY 4.0 license
Long-term outcomes in the management of left main disease: An updated meta-analysis of randomized controlled trials
Historically coronary artery bypass grafting (CABG) was regarded as the first choice for patients with unprotected left main (LM) disease. However, recent randomized controlled studies (RCTs) performed in expert centers have suggested similar outcomes following percutaneous coronary intervention (PCI) in the medium term (3 - 5 years). this meta-analysis indicates that PCI is associated with a comparable long-term risk of death to CABG for LM. However, patients treated with PCI present a higher risk of nonfatal non- procedural MI and repeat revascularization compared to those who undergo CABG
A novel CT-derived radiotranscriptomic signature of perivascular adipose tissue stratifies COVID-19 vascular cytokine burst and predicts in hospital outcomes
Thromboprophylaxis in Patients with COVID-19: Systematic Review of National and International Clinical Guidance Reports
Background: Venous Thromboembolism (VTE) is common among patients with severe Coronavirus Disease 2019 (COVID-19). Anticoagulation in hospitalized COVID-19 patients has been associated with survival benefit; however, the optimal thromboprophylaxis strategy has not yet been defined. Objective: To identify published guidance reports by national and international societies regarding thromboprophylaxis strategies in COVID-19 patients in different settings (outpatients, hospitalized, post-discharge). Methods: A systematic review of the literature (Pubmed/EMBASE) was conducted independently by two investigators. Results: Among 1942 initially identified articles, 33 guidance documents were included: 20 published by national and 13 by international societies. These documents provide recommendations mainly for hospitalized (97% of reports) and post-discharge (75%) COVID-19 patients, and less so for outpatients (34%). Thrombotic and bleeding risk stratification prior to any treatment decision is the cornerstone of all suggested thromboprophylaxis strategies; 81% of the documents recommend thromboprophylaxis for all hospitalized patients with a prophylactic dosage of low molecular weight heparin irrespective of VTE risk. Intermediate or therapeutic dose intensity is recommended in high VTE risk patients by 56% and 28% of documents, respectively. Mechanical thromboprophylaxis is suggested in case of high bleeding risk or contraindication to pharmacological thromboprophylaxis (59% of documents). Extended pharmacological thromboprophylaxis is recommended for patients with high VTE risk after hospital discharge (63% of documents). For non-hospitalized outpatients, 28% of documents recommend pharmacological thromboprophylaxis for high VTE risk. Conclusion: The current guidance identifies thromboprophylaxis in COVID-19 patients, especially during hospitalization, as of major importance for the prevention of VTE. Recommendations are derived from limited evidence from observational studies. © 2022 Bentham Science Publishers
Pressure-controlled intermittent coronary sinus occlusion improves the vasodilatory microvascular capacity and reduces myocardial injury in patients with STEMI
Background Preliminary data suggest that pressure-controlled intermittent coronary sinus occlusion (PICSO) might reduce the infarct size (IS) in patients with anterior ST-elevation myocardial infarction (STEMI). However, the applicability of this therapy to patients with inferior STEMI and its exact mechanism of action is uncertain.Methods and results Thirty-six patients (27 anterior and 9 inferior) with STEMI underwent PICSO-assisted-primary percutaneous intervention (PPCI) and were compared with matched controls who underwent standard PCI (n = 72). Median age was 63 (55-70) years and 82% were male.Coronary microvascular status was assessed using thermodilution-derived index of microcirculatory resistance (IMR) and the vasodilatory capacity was assessed using the resistive reserve ratio (RRR). IS and microvascular obstruction (MVO) were assessed using cardiovascular magnetic resonance imaging (CMR) within 48 h and 6 months of follow-up.At completion of PPCI, IMR improved significantly in PICSO-treated patients compared with controls in patients with either anterior (63.7 [49.8-74.6] vs. 35.9 [27.9-47.6], p < 0.001) or inferior STEMI (60.0 [47.6-67.1] vs. 22.7 [18.4-35.0], p < 0.001). RRR significantly improved after PICSO treatment for anterior (1.21 [1.01-1.42] vs. 1.73 [1.51-2.16], p = 0.002) or inferior STEMI (1.39 [1.05-1.90] vs. 2.87 [2.17-3.78], p = 0.001), whereas it did not change in controls compared with baseline.Patients treated with PICSO presented significantly less frequently with MVO (66.6% vs. 86.1%, p = 0.024) and smaller 6-month IS compared with controls (26% [17%-30%] vs. 30% [21%-37%], p = 0.045).Conclusion PICSO therapy may improve microvascular function and vasodilatory capacity, which contributes to reducing IS in patients with STEMI undergoing PPCI
