23 research outputs found
Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas
Intraductal papillary mucinous neoplasm (IPMN) is a common pancreatic cystic neoplasm that
is often invasive and metastatic, resulting in a poor prognosis. Few molecular alterations
unique to IPMN are known. We performed whole-exome sequencing for a primary IPMN tissue,
which uncovered somatic mutations in KCNF1, DYNC1H1, PGCP, STAB1, PTPRM, PRPF8, RNASE3,
SPHKAP, MLXIPL, VPS13C, PRCC, GNAS, KRAS, RBM10, RNF43, DOCK2, and CENPF. We
further analyzed GNAS mutations in archival cases of 118 IPMNs and 32 pancreatic
ductal adenocarcinomas (PDAs), which revealed that 48 (40.7%) of the 118 IPMNs but none of
the 32 PDAs harbored GNAS mutations. G-protein alpha-subunit encoded by GNAS
and its downstream targets, phosphorylated substrates of protein kinase A, were evidently
expressed in IPMN; the latter was associated with neoplastic grade. These results indicate
that GNAS mutations are common and specific for IPMN, and activation of G-protein
signaling appears to play a pivotal role in IPMN
Genome Wide Analysis of Acute Myeloid Leukemia Reveal Leukemia Specific Methylome and Subtype Specific Hypomethylation of Repeats
Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq) has the potential to identify changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in the development of acute myeloid leukemia (AML) we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters, gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6) with significantly methylated promoters were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu repeats with a high CpG density (P<0.0001). We were able to demonstrate significant inverse correlation between intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse correlation (R2 = 0.7). We conclude that the alterations in DNA methylation that accompany the development of AML affect not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite pyrosequencing and the Infinium array
Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods
This review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein–protein and protein–immobilized ligand interactions, analyzed either directly or indirectly. First, we introduce MS methods for the study of intact protein complexes in the gas phase. Next, pull-down methods for affinity-based analysis of protein–protein and protein–immobilized ligand interactions are discussed. Presently, this field of research is often called interactomics or interaction proteomics. A slightly different approach that will be discussed, chemical proteomics, allows one to analyze selectivity profiles of ligands for multiple drug targets and off-targets. Additionally, of particular interest is the use of surface plasmon resonance technologies coupled with MS for the study of protein interactions. The review addresses the principle of each of the methods with a focus on recent developments and the applicability to lead compound generation in drug discovery as well as the elucidation of protein interactions involved in cellular processes. The review focuses on the analysis of bioaffinity interactions of proteins with other proteins and with ligands, where the proteins are considered as the bioactives analyzed by MS
A Proteomics Investigation of Anchored PKA-RI Signaling
Compartmentalization of kinases and phosphatases plays an important role in the specificity of second messenger mediated signaling events. Localization of the cAMP-dependent protein kinase is mediated by interaction of its regulatory subunit (PKA-R) with the versatile family of A-kinase anchoring proteins (AKAPs). Most AKAPs bind avidly to PKA-RII, while some have dual specificity for both PKA-RI and PKA-RII, however, no mammalian PKA-RI specific AKAPs have thus far been assigned. This was mainly attributed to the observation that PKA-RI is more cytosolic, as compared to the more heavily compartmentalized PKA-RII. Chemical proteomics screens of the cAMP interactome in mammalian heart tissue recently identified sphingosine kinase type 1-interacting protein (SKIP, SPHKAP) as a putative novel AKAP. Biochemical characterization now shows that SPHKAP can be considered as the first mammalian AKAP that preferentially binds to PKA-RIα. Recombinant human SPHKAP functions as an RI-specific AKAP that utilizes the for AKAPs characteristic amphipathic helix for interaction. Further chemical proteomic screening utilizing differential binding characteristics of specific cAMP-resins confirms SPHKAPs endogenous specificity for PKA-RI directly in mammalian heart and spleen tissue. Alignment of SPHKAPs amphipathic helix with peptide models of PKA-RI or PKA-RII specific anchoring domains shows that it has largely only PKA-RIα characteristics. To further investigate the role of the protein, we combined subcellular fractionation, confocal microscopy and LC-MS/MS analysis to study its subcellular localization and exact molecular environment. We found that SPHKAP localizes to the cytoplasm as well as to the mitochondrial inner membrane space and matrix. Here, it colocalizes with PKA-RIα and associates with a mitochondrial inner membrane organizing system (MINOS) complex that is responsible for maintaining crista structure. Additionally, SPHKAP associates with apoptosis-inducing factor (AIF) and the phosphatase PGAM5. We found that the protein N-terminus is required for its mitochondrial localization and overexpression of SPHKAP results in abnormal mitochondria. We show that SPHKAP is a substrate of PKA and that phosphorylation regulates the interaction between SPHKAP and AIF upon cAMP and apoptosis stimulation. Sequence analysis revealed that SPHKAP contains a 13-amino acid motif similar to the BH3 domain present in BCL-2 family proteins. As with other BH3-only proteins, co-immunoprecipitation and deletion of BH3 core amino acids demonstrated that SPHKAP interacts with the anti-apoptotic BCL-2 and BCL-xL through its BH3 domain. Taken together, The data suggest a putative role for the mitochondrial SPHKAP-PKA type I complex in regulating mitochondrial crista structure and mitochondrial-mediated apoptosi
Applications of stable isotope dimethyl labeling in quantitative proteomics.
Mass spectrometry has proven to be an indispensable tool for protein identification, characterization, and quantification. Among the possible methods in quantitative proteomics, stable isotope labeling by using reductive dimethylation has emerged as a cost-effective, simple, but powerful method able to compete at any level with the present alternatives. In this review, we briefly introduce experimental and software methods for proteome analysis using dimethyl labeling and provide a comprehensive overview of reported applications in the analysis of (1) differential protein expression, (2) posttranslational modifications, and (3) protein interactions
Analysis of Secreted Proteins Using SILAC
Secreted proteins serve a crucial role in the communication between cells, tissues, and organs. Proteins released to the extracellular environment exert their function either locally or at distant points of the organism. Proteins are secreted in a highly dynamic fashion by cells and tissues in the body responding to the stimuli and requirements presented by the extracellular milieu. Characterization of secretomes derived from various cell types has been performed using different quantitative mass spectrometry-based proteomics strategies, several of them taking advantage of labeling with stable isotopes. Here, we describe the use of Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for the quantitative analysis of the skeletal muscle secretome during myogenesis.</p
Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220
The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610–623) preferentially interacts with RII, whereas site 2 (residues 1633–1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β
An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria
A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) to intracellular sites where they preferentially phosphorylate target substrates. Most AKAPs exhibit nanomolar affinity for the regulatory (RII) subunit of the type II PKA holoenzyme, whereas dual-specificity anchoring proteins also bind the type I (RI) regulatory subunit of PKA with 10–100-fold lower affinity. A range of cellular, biochemical, biophysical, and genetic approaches comprehensively establish that sphingosine kinase interacting protein (SKIP) is a truly type I-specific AKAP. Mapping studies located anchoring sites between residues 925–949 and 1,140–1,175 of SKIP that bind RI with dissociation constants of 73 and 774 nM, respectively. Molecular modeling and site-directed mutagenesis approaches identify Phe 929 and Tyr 1,151 as RI-selective binding determinants in each anchoring site. SKIP complexes exist in different states of RI-occupancy as single-molecule pull-down photobleaching experiments show that 41 ± 10% of SKIP sequesters two YFP-RI dimers, whereas 59 ± 10% of the anchoring protein binds a single YFP-RI dimer. Imaging, proteomic analysis, and subcellular fractionation experiments reveal that SKIP is enriched at the inner mitochondrial membrane where it associates with a prominent PKA substrate, the coiled-coil helix protein ChChd3
