282 research outputs found
Conditional regularity of solutions of the three dimensional Navier-Stokes equations and implications for intermittency
Two unusual time-integral conditional regularity results are presented for
the three-dimensional Navier-Stokes equations. The ideas are based on
-norms of the vorticity, denoted by , and particularly
on , where for . The first result, more appropriate for the unforced case, can be stated
simply : if there exists an for which the integral condition
is satisfied () then no singularity can occur on . The
constant for large . Secondly, for the forced case, by
imposing a critical \textit{lower} bound on , no
singularity can occur in for \textit{large} initial data. Movement
across this critical lower bound shows how solutions can behave intermittently,
in analogy with a relaxation oscillator. Potential singularities that drive
over this critical value can be ruled out whereas
other types cannot.Comment: A frequency was missing in the definition of D_{m} in (I5) v3. 11
pages, 1 figur
Increased Expression of AQP 1 and AQP 5 in Rat Lungs Ventilated with Low Tidal Volume is Time Dependent
Background and GoalsMechanical ventilation (MV) can induce or worsen pulmonary oedema. Aquaporins (AQPs) facilitate the selective and rapid bi-directional movement of water. Their role in the development and resolution of pulmonary oedema is controversial. Our objectives are to determine if prolonged MV causes lung oedema and changes in the expression of AQP 1 and AQP 5 in rats.Methods25 male Wistar rats were subjected to MV with a tidal volume of 10 ml/kg, during 2 hours (n = 12) and 4 hours (n = 13). Degree of oedema was compared with a group of non-ventilated rats (n = 5). The expression of AQP 1 and AQP 5 were determined by western immunoblotting, measuring the amount of mRNA (previously amplified by RT-PCR) and immunohistochemical staining of AQPs 1 and 5 in lung samples from all groups.ResultsLung oedema and alveolar-capillary membrane permeability did not change during MV. AQP-5 steady state levels in the western blot were increased (p<0.01) at 2 h and 4 h of MV. But in AQP-1 expression these differences were not found. However, the amount of mRNA for AQP-1 was increased at 2 h and 4 h of MV; and for AQP 5 at 4 h of MV. These findings were corroborated by representative immunohistochemical lung samples.ConclusionIn lungs from rats ventilated with a low tidal volume the expression of AQP 5 increases gradually with MV duration, but does not cause pulmonary oedema or changes in lung permeability. AQPs may have a protective effect against the oedema induced by MV
Proteasome Inhibitors Block DNA Repair and Radiosensitize Non-Small Cell Lung Cancer
Despite optimal radiation therapy (RT), chemotherapy and/or surgery, a majority of patients with locally advanced non-small cell lung cancer (NSCLC) fail treatment. To identify novel gene targets for improved tumor control, we performed whole genome RNAi screens to identify knockdowns that most reproducibly increase NSCLC cytotoxicity. These screens identified several proteasome subunits among top hits, including the topmost hit PSMA1, a component of the core 20 S proteasome. Radiation and proteasome inhibition showed synergistic effects. Proteasome inhibition resulted in an 80–90% decrease in homologous recombination (HR), a 50% decrease in expression of NF-κB-inducible HR genes BRCA1 and FANCD2, and a reduction of BRCA1, FANCD2 and RAD51 ionizing radiation-induced foci. IκBα RNAi knockdown rescued NSCLC radioresistance. Irradiation of mice with NCI-H460 xenografts after inducible PSMA1 shRNA knockdown markedly increased murine survival compared to either treatment alone. Proteasome inhibition is a promising strategy for NSCLC radiosensitization via inhibition of NF-κB-mediated expression of Fanconi Anemia/HR DNA repair genes.American Society for Radiation Oncology (Junior Faculty Career Research Training Award)Harvard University. Joint Center for Radiation Therapy (Foundation Grant)Dana-Farber/Harvard Cancer Center (SPORE Developmental Research Project Award in Lung Cancer Research)National Cancer Institute (U.S.) (Award K08CA172354
Recommended from our members
A randomized phase II trial of atezolizumab with or without tiragolumab before and after definitive chemoradiation for unresectable stage III non-small cell lung cancer (NSCLC; AFT-57)
Alliance Foundation Trial 09: A randomized, multicenter, phase 2 trial evaluating two sequences of pembrolizumab and standard platinum-based chemotherapy in patients with metastatic NSCLC
INTRODUCTION: The sequence of chemotherapy and pembrolizumab may affect antitumor immune response and efficacy of immunotherapy.
METHODS: This multicenter, randomized, phase 2 trial was designed to evaluate the efficacy of two sequences of chemotherapy and pembrolizumab in patients with stage 4 NSCLC. Both arms were considered investigational, and the study used a pick a winner design. The primary end point was objective response rate by independent radiologic review after eight cycles (24 wk). Patients were randomized 1:1 to arm A (chemotherapy for four cycles followed by pembrolizumab for four cycles) or arm B (pembrolizumab for four cycles followed by chemotherapy for four cycles). Patients in both arms without disease progression after the initial eight cycles continued pembrolizumab until disease progression, unacceptable toxicity, or a maximum of 2 years.
RESULTS: From March 2016 to July 2018, a total of 90 eligible patients were randomized (43 patients to arm A and 47 patients to arm B). The objective response rate at 24 weeks in arms A and B was 39.5 % (95 % confidence interval [CI]: 24.9%-54.1 %) and 40.4 % (95 % CI: 26.4%-54.5 %), respectively (
CONCLUSIONS: Additional evaluation of either sequence in a phase 3 trial is not warranted
Recommended from our members
Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer
Background: Risk of normal tissue toxicity limits the amount of thoracic radiation therapy (RT) that can be routinely prescribed to treat non-small cell lung cancer (NSCLC). An early biomarker of response to thoracic RT may provide a way to predict eventual toxicities—such as radiation pneumonitis—during treatment, thereby enabling dose adjustment before the symptomatic onset of late effects. MicroRNAs (miRNAs) were studied as potential serological biomarkers for thoracic RT. As a first step, we sought to identify miRNAs that correlate with delivered dose and standard dosimetric factors. Methods: We performed miRNA profiling of plasma samples obtained from five patients with Stage IIIA NSCLC at five dose-points each during radical thoracic RT. Candidate miRNAs were then assessed in samples from a separate cohort of 21 NSCLC patients receiving radical thoracic RT. To identify a cellular source of circulating miRNAs, we quantified in vitro miRNA expression intracellularly and within secreted exosomes in five NSCLC and stromal cell lines. Results: miRNA profiling of the discovery cohort identified ten circulating miRNAs that correlated with delivered RT dose as well as other dosimetric parameters such as lung V20. In the validation cohort, miR-29a-3p and miR-150-5p were reproducibly shown to decrease with increasing radiation dose. Expression of miR-29a-3p and miR-150-5p in secreted exosomes decreased with radiation. This was concomitant with an increase in intracellular levels, suggesting that exosomal export of these miRNAs may be downregulated in both NSCLC and stromal cells in response to radiation. Conclusions: miR-29a-3p and miR-150-5p were identified as circulating biomarkers that correlated with delivered RT dose. miR-150 has been reported to decrease in the circulation of mammals exposed to radiation while miR-29a has been associated with fibrosis in the human heart, lungs, and kidneys. One may therefore hypothesize that outlier levels of circulating miR-29a-3p and miR-150-5p may eventually help predict unexpected responses to radiation therapy, such as toxicity. Electronic supplementary material The online version of this article (doi:10.1186/s13014-016-0636-4) contains supplementary material, which is available to authorized users
Variable exponent Besov-Morrey spaces
In this paper we introduce Besov-Morrey spaces with all indices variable and study some fundamental properties. This includes a description in terms of Peetre maximal functions and atomic and molecular decompositions. This new scale of non-standard function spaces requires the introduction of variable exponent mixed Morrey-sequence spaces, which in turn are defined within the framework of semimodular spaces. In particular, we obtain a convolution inequality involving special radial kernels, which proves to be a key tool in this work.publishe
A DNA Repair Pathway–Focused Score for Prediction of Outcomes in Ovarian Cancer Treated With Platinum-Based Chemotherapy
Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells
Changes in the water permeability, aquaporin (AQP) activity, of leaf cells were investigated in response to different heavy metals (Zn2+, Pb2+, Cd2+, Hg2+). The cell pressure probe experiments were performed on onion epidermal cells as a model system. Heavy metal solutions at different concentrations (0.05 μM–2 mM) were used in our experiments. We showed that the investigated metal ions can be arranged in order of decreasing toxicity (expressed as a decrease in water permeability) as follows: Hg>Cd>Pb>Zn. Our results showed that β-mercaptoethanol treatment (10 mM solution) partially reverses the effect of AQP gating. The magnitude of this reverse differed depending on the metal and its concentration. The time course studies of the process showed that the gating of AQPs occurred within the first 10 min after the application of a metal. We also showed that after 20–40 min from the onset of metal treatment, the water flow through AQPs stabilized and remained constant. We observed that irrespective of the metal applied, the effect of AQP gating can be recorded within the first 10 min after the administration of metal ions. More generally, our results indicate that the toxic effects of investigated metal ions on the cellular level may involve AQP gating
- …
