894 research outputs found

    Advance care planning in 21st century Australia: a systematic review and appraisal of online advance care directive templates against national framework criteria

    Get PDF
    Objectives A drive to promote advance care planning at a population level has led to a proliferation of online advance care directive (ACD) templates but little information to guide consumer choice. The current study aimed to appraise the quality of online ACD templates promoted for use in Australia. Methods A systematic review of online Australian ACD templates was conducted in February 2014. ACD templates were identified via Google searches, and quality was independently appraised by two reviewers against criteria from the 2011 report A National Framework for Advance Care Directives. Bias either towards or against future medical treatment was assessed using criteria designed to limit subjectivity. Results Fourteen online ACD templates were included, all of which were available only in English. Templates developed by Southern Cross University best met the framework criteria. One ACD template was found to be biased against medical treatment – the Dying with Dignity Victoria Advance Healthcare Directive. Conclusions More research is needed to understand how online resources can optimally elicit and record consumers’ individual preferences for future care. Future iterations of the framework should address online availability and provide a simple rating system to inform choice and drive quality improvement

    A Study of the Day - Night Effect for the Super - Kamiokande Detector: I. Time Averaged Solar Neutrino Survival Probability

    Full text link
    This is the first of two articles aimed at providing comprehensive predictions for the day-night (D-N) effect for the Super-Kamiokande detector in the case of the MSW \nu_e \to \numt transition solution of the solar neutrino problem. The one-year averaged probability of survival of the solar \nue crossing the Earth mantle, the core, the inner 2/3 of the core, and the (core + mantle) is calculated with high precision (better than 1%) using the elliptical orbit approximation (EOA) to describe the Earth motion around the Sun. Results for the survival probability in the indicated cases are obtained for a large set of values of the MSW transition parameters Δm2\Delta m^2 and sin22θVsin^22\theta_{V} from the ``conservative'' regions of the MSW solution, derived by taking into account possible relatively large uncertainties in the values of the 8^{8}B and 7^{7}Be neutrino fluxes. Our results show that the one-year averaged D-N asymmetry in the νe\nu_e survival probability for neutrinos crossing the Earth core can be, in the case of sin22θV0.13sin^22 \theta_{V} \leq 0.13, larger than the asymmetry in the probability for (only mantle crossing + core crossing) neutrinos by a factor of up to six. The enhancement is larger in the case of neutrinos crossing the inner 2/3 of the core. This indicates that the Super-Kamiokande experiment might be able to test the sin22θV0.01sin^22\theta_{V} \leq 0.01 region of the MSW solution of the solar neutrino problem by performing selective D-N asymmetry measurements.Comment: LaTeX2e - 18 Text Pages + 21 figures = 39 Pages. - Figures in PS + text file sk1b14.tex requires two auxiliary files (included

    Constraining a possible time variation of the gravitational constant G with terrestrial nuclear laboratory data

    Get PDF
    Testing the constancy of the gravitational constant G has been a longstanding fundamental question in natural science. As first suggested by Jofr\'{e}, Reisenegger and Fern\'{a}ndez [1], Dirac's hypothesis of a decreasing gravitational constant GG with time due to the expansion of the Universe would induce changes in the composition of neutron stars, causing dissipation and internal heating. Eventually, neutron stars reach their quasi-stationary states where cooling due to neutrino and photon emissions balances the internal heating. The correlation of surface temperatures and radii of some old neutron stars may thus carry useful information about the changing rate of G. Using the density dependence of the nuclear symmetry energy constrained by recent terrestrial laboratory data on isospin diffusion in heavy-ion reactions at intermediate energies and the size of neutron skin in 208Pb^{208}Pb within the gravitochemical heating formalism, we obtain an upper limit of the relative changing rate of G˙/G4×1012yr1|\dot{G}/G|\le4\times 10^{-12}yr^{-1} consistent with the best available estimates in the literature.Comment: 27 pages, 11 figures, and 2 tables. Accepted version to appear in PRC (2007

    Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars

    Full text link
    The eigen-frequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an Equation of State (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy Esym(ρ)E_{sym}(\rho) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigen-frequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the wIIw_{II}-mode is found to exist only for neutron stars having a compactness of M/R0.1078M/R\geq 0.1078 independent of the EOS used.Comment: Version appeared in Phys. Rev. C80, 025801 (2009

    The solar neutrino problem after three hundred days of data at SuperKamiokande

    Get PDF
    We present an updated analysis of the solar neutrino problem in terms of both Mikheyev-Smirnov-Wolfenstein (MSW) and vacuum neutrino oscillations, with the inclusion of the preliminary data collected by the SuperKamiokande experiment during 306.3 days of operation. In particular, the observed energy spectrum of the recoil electrons from 8B neutrino scattering is discussed in detail and is used to constrain the mass-mixing parameter space. It is shown that: 1) the small mixing MSW solution is preferred over the large mixing one; 2) the vacuum oscillation solutions are strongly constrained by the energy spectrum measurement; and 3) the detection of a possible semiannual modulation of the 8B \nu flux due to vacuum oscillations should require at least one more year of operation of SuperKamiokande.Comment: 15 pages (RevTeX) + 8 figures (postscript). Requires epsfig.st

    Neutron star properties and the equation of state of neutron-rich matter

    Full text link
    We calculate total masses and radii of neutron stars (NS) for pure neutron matter and nuclear matter in beta-equilibrium. We apply a relativistic nuclear matter equation of state (EOS) derived from Dirac-Brueckner-Hartree-Fock (DBHF) calculations. We use realistic nucleon-nucleon (NN) interactions defined in the framework of the meson exchange potential models. Our results are compared with other theoretical predictions and recent observational data. Suggestions for further study are discussed.Comment: 13 pages, 9 figures, 1 table; Revised version, accepted for publication in Physical Review

    Spin polarized neutron matter within the Dirac-Brueckner-Hartree-Fock approach

    Get PDF
    The relation between energy and density (known as the nuclear equation of state) plays a major role in a variety of nuclear and astrophysical systems. Spin and isospin asymmetries can have a dramatic impact on the equation of state and possibly alter its stability conditions. An example is the possible manifestation of ferromagnetic instabilities, which would indicate the existence, at a certain density, of a spin-polarized state with lower energy than the unpolarized one. This issue is being discussed extensively in the literature and the conclusions are presently very model dependent. We will report and discuss our recent progress in the study of spin-polarized neutron matter. The approach we take is microscopic and relativistic. The calculated neutron matter properties are derived from realistic nucleon-nucleon interactions. This makes it possible to understand the nature of the EOS properties in terms of specific features of the nuclear force model.Comment: 6 pages, 11 figures, revised/extended calculation

    Neutrino mass matrix with U(2) flavor symmetry and neutrino oscillations

    Full text link
    The three neutrino mass matrices in the SU(5)×U(2)SU(5)\times U(2) model are studied focusing on the neutrino oscillation experiments. The atmospheric neutrino anomaly could be explained by the large νμντ\nu_{\mu} - \nu_{\tau} oscillation. The long baseline experiments are expected to detect signatures of the neutrino oscillation even if the atmospheric neutrino anomaly is not due to the neutrino oscillation. However, the model cannot solve the solar neutrino deficit while it could be reconciled with the LSND data.Comment: 12 pages, LaTex file, to be published in PR

    Constraints on long-baseline neutrino oscillation probabilities and CP asymmetries from neutrino oscillation data

    Get PDF
    We consider long-baseline neutrino oscillations in the framework of two schemes with mixing of four massive neutrinos which can accommodate all the existing indications in favour of neutrino mixing. Within these schemes, we derive bounds on the oscillation probabilities and the CP-odd neutrino-antineutrino asymmetries in long-baseline experiments. Using the results of short-baseline neutrino oscillation experiments, we obtain rather strong upper bounds on the long-baseline probabilities 1-P(nu_e->nu_e) and P(nu_mu->nu_e). Nevertheless, the projected sensitivities of the MINOS and ICARUS experiments are better than our bounds. We also show that there are no corresponding constraints for nu_mu->nu_mu and nu_mu->nu_tau long-baseline oscillations and that the CP-odd asymmetry in the latter channel can reach the maximal value allowed by the unitarity of the mixing matrix. Some schemes with mixing of three neutrinos are also considered.Comment: 32 pages including 5 figures, RevTeX. New discussion of the matter effect
    corecore