259 research outputs found

    Sparse square roots.

    Get PDF
    We show that it can be decided in polynomial time whether a graph of maximum degree 6 has a square root; if a square root exists, then our algorithm finds one with minimum number of edges. We also show that it is FPT to decide whether a connected n-vertex graph has a square root with at most n − 1 + k edges when this problem is parameterized by k. Finally, we give an exact exponential time algorithm for the problem of finding a square root with maximum number of edges

    An exact algorithm for graph coloring with polynomial memory

    Get PDF
    In this paper, we give an algorithm that computes the chromatic number of a graph in O(5.283n) time and polynomial memory

    Paradigms for Parameterized Enumeration

    Full text link
    The aim of the paper is to examine the computational complexity and algorithmics of enumeration, the task to output all solutions of a given problem, from the point of view of parameterized complexity. First we define formally different notions of efficient enumeration in the context of parameterized complexity. Second we show how different algorithmic paradigms can be used in order to get parameter-efficient enumeration algorithms in a number of examples. These paradigms use well-known principles from the design of parameterized decision as well as enumeration techniques, like for instance kernelization and self-reducibility. The concept of kernelization, in particular, leads to a characterization of fixed-parameter tractable enumeration problems.Comment: Accepted for MFCS 2013; long version of the pape

    Linear Time LexDFS on Cocomparability Graphs

    Full text link
    Lexicographic depth first search (LexDFS) is a graph search protocol which has already proved to be a powerful tool on cocomparability graphs. Cocomparability graphs have been well studied by investigating their complements (comparability graphs) and their corresponding posets. Recently however LexDFS has led to a number of elegant polynomial and near linear time algorithms on cocomparability graphs when used as a preprocessing step [2, 3, 11]. The nonlinear runtime of some of these results is a consequence of complexity of this preprocessing step. We present the first linear time algorithm to compute a LexDFS cocomparability ordering, therefore answering a problem raised in [2] and helping achieve the first linear time algorithms for the minimum path cover problem, and thus the Hamilton path problem, the maximum independent set problem and the minimum clique cover for this graph family

    Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes

    Full text link
    Many fixed-parameter tractable algorithms using a bounded search tree have been repeatedly improved, often by describing a larger number of branching rules involving an increasingly complex case analysis. We introduce a novel and general search strategy that branches on the forbidden subgraphs of a graph class relaxation. By using the class of P4P_4-sparse graphs as the relaxed graph class, we obtain efficient bounded search tree algorithms for several parameterized deletion problems. We give the first non-trivial bounded search tree algorithms for the cograph edge-deletion problem and the trivially perfect edge-deletion problems. For the cograph vertex deletion problem, a refined analysis of the runtime of our simple bounded search algorithm gives a faster exponential factor than those algorithms designed with the help of complicated case distinctions and non-trivial running time analysis [21] and computer-aided branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and Applications (DMAA

    Fixed-parameter tractability of multicut parameterized by the size of the cutset

    Get PDF
    Given an undirected graph GG, a collection {(s1,t1),...,(sk,tk)}\{(s_1,t_1),..., (s_k,t_k)\} of pairs of vertices, and an integer pp, the Edge Multicut problem ask if there is a set SS of at most pp edges such that the removal of SS disconnects every sis_i from the corresponding tit_i. Vertex Multicut is the analogous problem where SS is a set of at most pp vertices. Our main result is that both problems can be solved in time 2O(p3)...nO(1)2^{O(p^3)}... n^{O(1)}, i.e., fixed-parameter tractable parameterized by the size pp of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)...nO(1)f(p)... n^{O(1)} exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset

    Polynomial kernelization for removing induced claws and diamonds

    Full text link
    A graph is called (claw,diamond)-free if it contains neither a claw (a K1,3K_{1,3}) nor a diamond (a K4K_4 with an edge removed) as an induced subgraph. Equivalently, (claw,diamond)-free graphs can be characterized as line graphs of triangle-free graphs, or as linear dominoes, i.e., graphs in which every vertex is in at most two maximal cliques and every edge is in exactly one maximal clique. In this paper we consider the parameterized complexity of the (claw,diamond)-free Edge Deletion problem, where given a graph GG and a parameter kk, the question is whether one can remove at most kk edges from GG to obtain a (claw,diamond)-free graph. Our main result is that this problem admits a polynomial kernel. We complement this finding by proving that, even on instances with maximum degree 66, the problem is NP-complete and cannot be solved in time 2o(k)V(G)O(1)2^{o(k)}\cdot |V(G)|^{O(1)} unless the Exponential Time Hypothesis fai

    On the stable degree of graphs

    No full text
    We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree
    corecore