259 research outputs found
Sparse square roots.
We show that it can be decided in polynomial time whether a graph of maximum degree 6 has a square root; if a square root exists, then our algorithm finds one with minimum number of edges. We also show that it is FPT to decide whether a connected n-vertex graph has a square root with at most n − 1 + k edges when this problem is parameterized by k. Finally, we give an exact exponential time algorithm for the problem of finding a square root with maximum number of edges
An exact algorithm for graph coloring with polynomial memory
In this paper, we give an algorithm that computes the chromatic number of a
graph in O(5.283n) time and polynomial memory
Paradigms for Parameterized Enumeration
The aim of the paper is to examine the computational complexity and
algorithmics of enumeration, the task to output all solutions of a given
problem, from the point of view of parameterized complexity. First we define
formally different notions of efficient enumeration in the context of
parameterized complexity. Second we show how different algorithmic paradigms
can be used in order to get parameter-efficient enumeration algorithms in a
number of examples. These paradigms use well-known principles from the design
of parameterized decision as well as enumeration techniques, like for instance
kernelization and self-reducibility. The concept of kernelization, in
particular, leads to a characterization of fixed-parameter tractable
enumeration problems.Comment: Accepted for MFCS 2013; long version of the pape
Linear Time LexDFS on Cocomparability Graphs
Lexicographic depth first search (LexDFS) is a graph search protocol which
has already proved to be a powerful tool on cocomparability graphs.
Cocomparability graphs have been well studied by investigating their
complements (comparability graphs) and their corresponding posets. Recently
however LexDFS has led to a number of elegant polynomial and near linear time
algorithms on cocomparability graphs when used as a preprocessing step [2, 3,
11]. The nonlinear runtime of some of these results is a consequence of
complexity of this preprocessing step. We present the first linear time
algorithm to compute a LexDFS cocomparability ordering, therefore answering a
problem raised in [2] and helping achieve the first linear time algorithms for
the minimum path cover problem, and thus the Hamilton path problem, the maximum
independent set problem and the minimum clique cover for this graph family
Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes
Many fixed-parameter tractable algorithms using a bounded search tree have
been repeatedly improved, often by describing a larger number of branching
rules involving an increasingly complex case analysis. We introduce a novel and
general search strategy that branches on the forbidden subgraphs of a graph
class relaxation. By using the class of -sparse graphs as the relaxed
graph class, we obtain efficient bounded search tree algorithms for several
parameterized deletion problems. We give the first non-trivial bounded search
tree algorithms for the cograph edge-deletion problem and the trivially perfect
edge-deletion problems. For the cograph vertex deletion problem, a refined
analysis of the runtime of our simple bounded search algorithm gives a faster
exponential factor than those algorithms designed with the help of complicated
case distinctions and non-trivial running time analysis [21] and computer-aided
branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and
Applications (DMAA
Fixed-parameter tractability of multicut parameterized by the size of the cutset
Given an undirected graph , a collection of
pairs of vertices, and an integer , the Edge Multicut problem ask if there
is a set of at most edges such that the removal of disconnects
every from the corresponding . Vertex Multicut is the analogous
problem where is a set of at most vertices. Our main result is that
both problems can be solved in time , i.e.,
fixed-parameter tractable parameterized by the size of the cutset in the
solution. By contrast, it is unlikely that an algorithm with running time of
the form exists for the directed version of the problem, as
we show it to be W[1]-hard parameterized by the size of the cutset
Polynomial kernelization for removing induced claws and diamonds
A graph is called (claw,diamond)-free if it contains neither a claw (a
) nor a diamond (a with an edge removed) as an induced subgraph.
Equivalently, (claw,diamond)-free graphs can be characterized as line graphs of
triangle-free graphs, or as linear dominoes, i.e., graphs in which every vertex
is in at most two maximal cliques and every edge is in exactly one maximal
clique.
In this paper we consider the parameterized complexity of the
(claw,diamond)-free Edge Deletion problem, where given a graph and a
parameter , the question is whether one can remove at most edges from
to obtain a (claw,diamond)-free graph. Our main result is that this problem
admits a polynomial kernel. We complement this finding by proving that, even on
instances with maximum degree , the problem is NP-complete and cannot be
solved in time unless the Exponential Time
Hypothesis fai
On the stable degree of graphs
We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree
- …
