9,437 research outputs found

    Life, The Universe, and Nothing: Life and Death in an Ever-Expanding Universe

    Get PDF
    Current evidence suggests that the cosmological constant is not zero, or that we live in an open universe. We examine the implications for the future under these assumptions, and find that they are striking. If the Universe is cosmological constant-dominated, our ability to probe the evolution of large scale structure will decrease with time ---presently observable distant sources will disappear on a time-scale comparable to the period of stellar burning. Moreover, while the Universe might expand forever, the integrated conscious lifetime of any civilization will be finite, although it can be astronomically long. We find that this latter result is far more general. In the absence of possible exotic and uncertain strong gravitational effects, the total information recoverable by any civilization over the entire history of our universe is finite, and assuming that consciousness has a physical computational basis, life cannot be eternal.Comment: 23 pages, latex, submitted to Ap.

    Universal Limits on Computation

    Full text link
    The physical limits to computation have been under active scrutiny over the past decade or two, as theoretical investigations of the possible impact of quantum mechanical processes on computing have begun to make contact with realizable experimental configurations. We demonstrate here that the observed acceleration of the Universe can produce a universal limit on the total amount of information that can be stored and processed in the future, putting an ultimate limit on future technology for any civilization, including a time-limit on Moore's Law. The limits we derive are stringent, and include the possibilities that the computing performed is either distributed or local. A careful consideration of the effect of horizons on information processing is necessary for this analysis, which suggests that the total amount of information that can be processed by any observer is significantly less than the Hawking-Bekenstein entropy associated with the existence of an event horizon in an accelerating universe.Comment: 3 pages including eps figure, submitted to Phys. Rev. Lett; several typos corrected, several references added, and a short discussion of w <-1 adde

    Old Galaxies at High Redshift and the Cosmological Constant

    Get PDF
    In a recent striking discovery, Dunlop {\bf \it et al} observed a galaxy at redshift z=1.55 with an estimated age of 3.5 Gyr. This is incompatible with age estimates for a flat matter dominated universe unless the Hubble constant is less than 45kms1Mpc1 45 kms^{-1}Mpc^{-1}. While both an open universe, and a universe with a cosmological constant alleviate this problem, I argue here that this result favors a non-zero cosmological constant, especially when considered in light of other cosmological constraints. In the first place, for the favored range of matter densities, this constraint is more stringent than the globular cluster age constraint, which already favors a non-zero cosmological constant. Moreover, the age-redshift relation for redshifts of order unity implies that the ratio between the age associated with redshift 1.55 and the present age is also generally larger for a cosmological constant dominated universe than for an open universe. In addition, structure formation is generally suppressed in low density cosmologies, arguing against early galaxy formation. The additional constraints imposed by the new observation on the parameter space of hh vs Ωmatter\Omega_{matter} (where H=100hkms1Mpc1H= 100 h kms^{-1}Mpc^{-1}) are derived for both cosmologies. For a cosmological constant dominated universe this constraint is consistent with the range allowed by other cosmological constraints, which also favor a non-zero value.Comment: latex, 10 pages, including two embedded postscript figure

    Radiation can never again dominate Matter in a Vacuum Dominated Universe

    Full text link
    We demonstrate that in a vacuum-energy-dominated expansion phase, surprisingly neither the decay of matter nor matter-antimatter annihilation into relativistic particles can ever cause radiation to once again dominate over matter in the future history of the universe.Comment: updated version, as it will appear in Phys. Rev D. Title change, and some other minor alteration

    Dark matter scenarios in a constrained model with Dirac gauginos

    Full text link
    We perform the first analysis of Dark Matter scenarios in a constrained model with Dirac Gauginos. The model under investigation is the Constrained Minimal Dirac Gaugino Supersymmetric Standard model (CMDGSSM) where the Majorana mass terms of gauginos vanish. However, RR-symmetry is broken in the Higgs sector by an explicit and/or effective BμB_\mu-term. This causes a mass splitting between Dirac states in the fermion sector and the neutralinos, which provide the dark matter candidate, become pseudo-Dirac states. We discuss two scenarios: the universal case with all scalar masses unified at the GUT scale, and the case with non-universal Higgs soft-terms. We identify different regions in the parameter space which fullfil all constraints from the dark matter abundance, the limits from SUSY and direct dark matter searches and the Higgs mass. Most of these points can be tested with the next generation of direct dark matter detection experiments.Comment: 28 pages, 11 figures; v2: minor changes, title modified; matches published versio

    N-loop running should be combined with N-loop matching

    Get PDF
    We investigate the high-scale behaviour of Higgs sectors beyond the Standard Model, pointing out that the proper matching of the quartic couplings before applying the renormalisation group equations (RGEs) is of crucial importance for reliable predictions at larger energy scales. In particular, the common practice of leading-order parameters in the RGE evolution is insufficient to make precise statements on a given model's UV behaviour, typically resulting in uncertainties of many orders of magnitude. We argue that, before applying N-loop RGEs, a matching should even be performed at N-loop order in contrast to common lore. We show both analytical and numerical results where the impact is sizeable for three minimal extensions of the Standard Model: a singlet extension, a second Higgs doublet and finally vector-like quarks. We highlight that the known two-loop RGEs tend to moderate the running of their one-loop counterparts, typically delaying the appearance of Landau poles. For the addition of vector-like quarks we show that the complete two-loop matching and RGE evolution hints at a stabilisation of the electroweak vacuum at high energies, in contrast to results in the literature.Comment: 16 pages, 11 figures; v2: title changed, accepted for publication in PR

    Lifetime statistics of quantum chaos studied by a multiscale analysis

    Get PDF
    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a Silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines graph theory, energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.Comment: 4 pages, 6 figure

    Gravitational Lensing Signature of Long Cosmic Strings

    Get PDF
    The gravitational lensing by long, wiggly cosmic strings is shown to produce a large number of lensed images of a background source. In addition to pairs of images on either side of the string, a number of small images outline the string due to small-scale structure on the string. This image pattern could provide a highly distinctive signature of cosmic strings. Since the optical depth for multiple imaging of distant quasar sources by long strings may be comparable to that by galaxies, these image patterns should be clearly observable in the next generation of redshift surveys such as the Sloan Digital Sky Survey.Comment: 4 pages, revtex with 3 postscript figures include
    corecore