1,183 research outputs found
Damage spreading and coupling in Markov chains
In this paper, we relate the coupling of Markov chains, at the basis of
perfect sampling methods, with damage spreading, which captures the chaotic
nature of stochastic dynamics. For two-dimensional spin glasses and hard
spheres we point out that the obstacle to the application of perfect-sampling
schemes is posed by damage spreading rather than by the survey problem of the
entire configuration space. We find dynamical damage-spreading transitions
deeply inside the paramagnetic and liquid phases, and show that critical values
of the transition temperatures and densities depend on the coupling scheme. We
discuss our findings in the light of a classic proof that for arbitrary Monte
Carlo algorithms damage spreading can be avoided through non-Markovian coupling
schemes.Comment: 6 pages, 8 figure
Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte-Carlo simulations
We use replica exchange Monte-Carlo simulations to measure the equilibrium
equation of state of the disordered fluid state for a binary hard sphere
mixture up to very large densities where standard Monte-Carlo simulations do
not easily reach thermal equilibrium. For the moderate system sizes we use (up
to N=100), we find no sign of a pressure discontinuity near the location of
dynamic glass singularities extrapolated using either algebraic or simple
exponential divergences, suggesting they do not correspond to genuine
thermodynamic glass transitions. Several scenarios are proposed for the fate of
the fluid state in the thermodynamic limit.Comment: 10 pages, 8 fig
Genetic and non-genetic determinants of thymic epithelial cell number and function
The thymus is the site of T cell development in vertebrates. In general, the output of T cells is determined by the number of thymic epithelial cells (TECs) and their relative thymopoietic activity. Here, we show that the thymopoietic activity of TECs differs dramatically between individual mouse strains. Moreover, in males of some strains, TECs perform better on a per cell basis than their counterparts in females; in other strains, this situation is reversed. Genetic crosses indicate that TEC numbers and thymopoietic capacity are independently controlled. Long-term analysis of functional parameters of TECs after castration provides evidence that the number of Foxn1-expressing TECs directly correlates with thymopoietic activity. Our study highlights potential complications that can arise when comparing parameters of TEC biology across different genetic backgrounds; these could affect the interpretation of the outcomes of interventions aimed at modulating thymic activity in genetically diverse populations, such as humans
Critical Current Peaks at in Superconductors with Columnar Defects: Recrystalizing the Interstitial Glass
The role of commensurability and the interplay of correlated disorder and
interactions on vortex dynamics in the presence of columnar pins is studied via
molecular dynamics simulations. Simulations of dynamics reveal substantial
caging effects and a non-monotonic dependence of the critical current with
enhancements near integer values of the matching field and
in agreement with experiments on the cuprates. We find qualitative
differences in the phase diagram for small and large values of the matching
field.Comment: 5 pages, 4 figures (3 color
Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition
The scaling of the conductivity at the superfluid-insulator quantum phase
transition in two dimensions is studied by numerical simulations of the
Bose-Hubbard model. In contrast to previous studies, we focus on properties of
this model in the experimentally relevant thermodynamic limit at finite
temperature T. We find clear evidence for deviations from w_k-scaling of the
conductivity towards w_k/T-scaling at low Matsubara frequencies w_k. By careful
analytic continuation using Pade approximants we show that this behavior
carries over to the real frequency axis where the conductivity scales with w/T
at small frequencies and low temperatures. We estimate the universal dc
conductivity to be 0.45(5)Q^2/h, distinct from previous estimates in the T=0,
w/T >> 1 limit.Comment: Accepted for publication in PR
Learning by message-passing in networks of discrete synapses
We show that a message-passing process allows to store in binary "material"
synapses a number of random patterns which almost saturates the information
theoretic bounds. We apply the learning algorithm to networks characterized by
a wide range of different connection topologies and of size comparable with
that of biological systems (e.g. ). The algorithm can be
turned into an on-line --fault tolerant-- learning protocol of potential
interest in modeling aspects of synaptic plasticity and in building
neuromorphic devices.Comment: 4 pages, 3 figures; references updated and minor corrections;
accepted in PR
Phase Diagram of Bosonic Atoms in Two-Color Superlattices
We investigate the zero temperature phase diagram of a gas of bosonic atoms
in one- and two-color standing-wave lattices in the framework of the
Bose-Hubbard model. We first introduce some relevant physical quantities;
superfluid fraction, condensate fraction, quasimomentum distribution, and
matter-wave interference pattern. We then discuss the relationships between
them on the formal level and show that the superfluid fraction, which is the
relevant order parameter for the superfluid to Mott-insulator transition,
cannot be probed directly via the matter wave interference patterns. The formal
considerations are supported by exact numerical solutions of the Bose-Hubbard
model for uniform one-dimensional systems. We then map out the phase diagram of
bosons in non-uniform lattices. The emphasis is on optical two-color
superlattices which exhibit a sinusoidal modulation of the well depth and can
be easily realized experimentally. From the study of the superfluid fraction,
the energy gap, and other quantities we identify new zero-temperature phases,
including a localized and a quasi Bose-glass phase, and discuss prospects for
their experimental observation.Comment: 18 pages, 17 figures, using REVTEX
Ultracold Bosonic Atoms in Disordered Optical Superlattices
The influence of disorder on ultracold atomic Bose gases in quasiperiodic
optical lattices is discussed in the framework of the one-dimensional
Bose-Hubbard model. It is shown that simple periodic modulations of the well
depths generate a rich phase diagram consisting of superfluid, Mott insulator,
Bose-glass and Anderson localized phases. The detailed evolution of mean
occupation numbers and number fluctuations as function of modulation amplitude
and interaction strength is discussed. Finally, the signatures of the different
phases, especially of the Bose-glass phase, in matter-wave interference
experiments are investigated.Comment: 4 pages, 4 figures, using REVTEX
Optimal coloured perceptrons
Ashkin-Teller type perceptron models are introduced. Their maximal capacity
per number of couplings is calculated within a first-step
replica-symmetry-breaking Gardner approach. The results are compared with
extensive numerical simulations using several algorithms.Comment: 8 pages in Latex with 2 eps figures, RSB1 calculations has been adde
Quantum phase transitions of light
Recently, condensed matter and atomic experiments have reached a length-scale
and temperature regime where new quantum collective phenomena emerge. Finding
such physics in systems of photons, however, is problematic, as photons
typically do not interact with each other and can be created or destroyed at
will. Here, we introduce a physical system of photons that exhibits strongly
correlated dynamics on a meso-scale. By adding photons to a two-dimensional
array of coupled optical cavities each containing a single two-level atom in
the photon-blockade regime, we form dressed states, or polaritons, that are
both long-lived and strongly interacting. Our zero temperature results predict
that this photonic system will undergo a characteristic Mott insulator
(excitations localised on each site) to superfluid (excitations delocalised
across the lattice) quantum phase transition. Each cavity's impressive photon
out-coupling potential may lead to actual devices based on these quantum
many-body effects, as well as observable, tunable quantum simulators. We
explicitly show that such phenomena may be observable in micro-machined diamond
containing nitrogen-vacancy colour centres and superconducting microwave
strip-line resonators.Comment: 11 pages, 5 figures (2 in colour
- …
