130 research outputs found
Feasibility Study of Short Takeoff and Landing Urban Air Mobility Vehicles Using Geometric Programming
Electric Short Takeoff and Landing (eSTOL) vehicles are proposed as a path towards implementing an Urban Air Mobility (UAM) network that reduces critical vehicle certification risks and offers advantages in vehicle performance compared to the widely proposed Electric Vertical Takeoff and Landing (eVTOL) aircraft. An overview is given of the system constraints and key enabling technologies that must be incorporated into the design of the vehicle. The tradeoffs between vehicle performance and runway length are investigated using geometric programming, a robust optimization framework. Runway lengths as short as 100-300 ft are shown to be feasible, depending on the level of technology and the desired cruise speed. The tradeoffs between runway length and the potential to build new infrastructure in urban centers are investigated using Boston as a representative case study. The placement of some runways up to 600ft is shown to be possible in the urban center, with a significant increase in the number of potential locations for runways shorter than 300ft. Key challenges and risks to implementation are discussed
5G and AI technology application in the AMTC learning factory
5G and AI (Artificial Intelligence) are changing industrial production and offer great potential for manufacturing enterprises. One of the effects resulting from the increasing quantity of production data is the increasing demands of transmission of large amounts of data, fast transmission speed, and rapid data analysis. However, merely relying on traditional communication technology and manual data processing does not lead to high transmission performance and low analysis time. It is essential to integrate 5G and AI technology to flexibly transmit large amounts of data and real-time data. To demonstrate the feasibility and potential of these two technologies, a concept was developed at the Advanced Manufacturing Technology Center (AMTC) at the Tongji University (Shanghai, China) and further implemented in the AMTC learning factory in cooperation with wbk of Karlsruhe Institute of Technology (Karlsruhe, Germany) and Ruhr-University Bochum (Bochum, Germany). This paper presents the learning factory design in detail, describing the concept design, training environment and training phases in the AMTC learning factory. It is followed by a case study consisting of specific examples of 5G and AI, implemented in the AMTC learning factory. The importance of integrated 5G and AI applications is pointed out and discussed
Efficacy and safety of CyberKnife radiosurgery in elderly patients with brain metastases: A retrospective clinical evaluation
Background: Stereotactic radiosurgery (SRS) has been increasingly applied for up to 10 brain metastases instead of whole brain radiation therapy (WBRT) to achieve local tumor control while reducing neurotoxicity. Furthermore, brain-metastasis incidence is rising due to the increasing survival of patients with cancer. Our aim was to analyze the efficacy and safety of CyberKnife (CK) radiosurgery for elderly patients. Methods: We retrospectively identified all patients with brain metastases 65 65 years old treated with CK-SRS at our institution since 2011 and analyzed data of primary diseases, multimodality treatments, and local therapy effect based on imaging follow-up and treatment safety. Kaplan-Meier analysis for local progression-free interval and overall survival were performed. Results: We identified 97 patients (233 lesions) fulfilling the criteria at the first CK-SRS. The mean age was 73.2 \ub1 5.8 (range: 65.0-87.0) years. Overall, 13.4% of the patients were > 80 years old. The three most frequent primary cancers were lung (40.2%), kidney (22.7%), and malignant melanoma (15.5%). In 38.5% (47/122 treatments) multiple brain metastases were treated with the CK-SRS, with up to eight lesions in one session. The median planning target volume (PTV) was 1.05 (range: 0.01-19.80) cm3. A single fraction was applied in 92.3% of the lesions with a median prescription dose of 19 (range: 12-21) Gy. The estimated overall survivals at 3-, 6-, and 12 months after SRS were 79, 55, and 23%, respectively. The estimated local tumor progression-free intervals at 6-, 12-, 24-, 36-, and 72 months after SRS were 99.2, 89.0, 67.2, 64.6, and 64.6%, respectively. Older age and female sex were predictive factors of local progression. The Karnofsky performance score remained stable in 97.9% of the patients; only one patient developed a neurological deficit after SRS of a cerebellar lesion (ataxia, CTCAE Grade 2). Conclusions: SRS is a safe and efficient option for the treatment of elderly patients with brain metastases with good local control rates without the side effects of WBRT. Older age and female sex seem to be predictive factors of local progression. Prospective studies are warranted to clarify the role of SRS treatment for elderly patients
Requirement analysis for an AI-based AR assistance system for surgical tools in the operating room: stakeholder requirements and technical perspectives
Abstract
Purpose
We aim to investigate the integration of augmented reality (AR) within the context of increasingly complex surgical procedures and instrument handling toward the transition to smart operating rooms (OR). In contrast to cumbersome paper-based surgical instrument manuals still used in the OR, we wish to provide surgical staff with an AR head-mounted display that provides in-situ visualization and guidance throughout the assembly process of surgical instruments. Our requirement analysis supports the development and provides guidelines for its transfer into surgical practice.
Methods
A three-phase user-centered design approach was applied with online interviews, an observational study, and a workshop with two focus groups with scrub nurses, circulating nurses, surgeons, manufacturers, clinic IT staff, and members of the sterilization department. The requirement analysis was based on key criteria for usability. The data were analyzed via structured content analysis.
Results
We identified twelve main problems with the current use of paper manuals. Major issues included sterile users’ inability to directly handle non-sterile manuals, missing details, and excessive text information, potentially delaying procedure performance. Major requirements for AR-driven guidance fall into the categories of design, practicability, control, and integration into the current workflow. Additionally, further recommendations for technical development could be obtained.
Conclusion
In conclusion, our insights have outlined a comprehensive spectrum of requirements that are essential for the successful implementation of an AI- and AR-driven guidance for assembling surgical instruments. The consistently appreciative evaluation by stakeholders underscores the profound potential of AR and AI technology as valuable assistance and guidance
An exploration of methods for obtaining 0 = dead anchors for latent scale EQ-5D-Y values
Objectives
Discrete choice experiments (DCEs) can be used to obtain latent scale values for the EQ-5D-Y, but these require anchoring at 0 = dead to meet the conventions of quality-adjusted life year (QALY) estimation. The primary aim of this study is to compare four preference elicitation methods for obtaining anchors for latent scale EQ-5D-Y values.
Methods
Four methods were tested: visual analogue scale (VAS), DCE (with a duration attribute), lag-time time trade-off (TTO) and the location-of-dead (LOD) approach. In computer-assisted personal interviews, UK general public respondents valued EQ-5D-3L health states from an adult perspective and EQ-5D-Y health states from a 10-year-old child perspective. Respondents completed valuation tasks using all four methods, under both perspectives.
Results
349 interviews were conducted. Overall, respondents gave lower values under the adult perspective compared to the child perspective, with some variation across methods. The mean TTO value for the worst health state (33333) was about equal to dead in the child perspective and worse than dead in the adult perspective. The mean VAS rescaled value for 33333 was also higher in the child perspective. The DCE produced positive child perspective values and negative adult perspective values, though the models were not consistent. The LOD median rescaled value for 33333 was negative under both perspectives and higher in the child perspective.
Discussion
There was broad agreement across methods. Potential criteria for selecting a preferred anchoring method are presented. We conclude by discussing the decision-making circumstances under which utilities and QALY estimates for children and adults need to be commensurate to achieve allocative efficiency
Hemodynamic effects of volume replacement with saline solution and hypertonic hydroxyethyl starch in dogs
Case report: The management of advanced oral cancer in a Jehovah's Witness using the Ultracision Harmonic Scalpel
We present the first case of a head and neck oncological procedure accomplished in a Jehovah's Witness using the Ultracision Harmonic Scalpel (Ethicon, Cincinnati, OH). Jehovah's Witnesses present a serious challenge to the head and neck cancer surgeon due to their refusal to accept transfusion of any blood products. However, our experience reinforces the view that surgical management of head and neck cancer is possible in these patients. We show the Harmonic Scalpel, an ultrasonic tissue dissector, to be a useful surgical tool in obviating the need for blood transfusion. Preoperative optimisation, intra-operative surgical and anaesthetic techniques are also fully discussed
Requirement analysis for an AI-based AR assistance system for surgical tools in the operating room: stakeholder requirements and technical perspectives
Purpose We aim to investigate the integration of augmented reality (AR) within the context of increasingly complex surgical procedures and instrument handling toward the transition to smart operating rooms (OR). In contrast to cumbersome paper-based surgical instrument manuals still used in the OR, we wish to provide surgical staff with an AR head-mounted display that provides in-situ visualization and guidance throughout the assembly process of surgical instruments. Our requirement analysis supports the development and provides guidelines for its transfer into surgical practice. Methods A three-phase user-centered design approach was applied with online interviews, an observational study, and a workshop with two focus groups with scrub nurses, circulating nurses, surgeons, manufacturers, clinic IT staff, and members of the sterilization department. The requirement analysis was based on key criteria for usability. The data were analyzed via structured content analysis. Results We identified twelve main problems with the current use of paper manuals. Major issues included sterile users’ inability to directly handle non-sterile manuals, missing details, and excessive text information, potentially delaying procedure performance. Major requirements for AR-driven guidance fall into the categories of design, practicability, control, and integration into the current workflow. Additionally, further recommendations for technical development could be obtained. Conclusion In conclusion, our insights have outlined a comprehensive spectrum of requirements that are essential for the successful implementation of an AI- and AR-driven guidance for assembling surgical instruments. The consistently appreciative evaluation by stakeholders underscores the profound potential of AR and AI technology as valuable assistance and guidance.Open Access funding enabled and organized by Projekt DEAL.Bundesministerium für Bildung und Forschunghttp://dx.doi.org/10.13039/501100002347Westfälische Hochschule Gelsenkirchen Bocholt Recklinghausen (3325
The Toronto prehospital hypertonic resuscitation-head injury and multi organ dysfunction trial (TOPHR HIT) - Methods and data collection tools
<p>Abstract</p> <p>Background</p> <p>Clinical trials evaluating the use of hypertonic saline in the treatment of hypovolemia and head trauma suggest no survival superiority over normal saline; however subgroup analyses suggest there may be a reduction in the inflammatory response and multiorgan failure which may lead to better survival and enhanced neurocognitive function. We describe a feasibility study of randomizing head injured patients to hypertonic saline and dextran vs. normal saline administration in the out of hospital setting.</p> <p>Methods/Design</p> <p>This feasibility study employs a randomized, placebo-controlled design evaluating normal saline compared with a single dose of 250 ml of 7.5% hypertonic saline in 6% dextran 70 in the management of traumatic brain injuries. The primary feasibility endpoints of the trial were: 1) baseline survival rates for the treatment and control group to aid in the design of a definitive multicentre trial, 2) randomization compliance rate, 3) ease of protocol implementation in the out-of-hospital setting, and 4) adverse event rate of HSD infusion.</p> <p>The secondary objectives include measuring the effect of HSD in modulating the immuno-inflammatory response to severe head injury and its effect on modulating the release of neuro-biomarkers into serum; evaluating the role of serum neuro-biomarkers in predicting patient outcome and clinical response to HSD intervention; evaluating effects of HSD on brain atrophy post-injury and neurocognitive and neuropsychological outcomes.</p> <p>Discussion</p> <p>We anticipate three aspects of the trial will present challenges to trial success; ethical demands associated with a waiver of consent trial, challenging follow up and comprehensive accurate timely data collection of patient identifiers and clinical or laboratory values. In addition all the data collection tools had to be derived de novo as none existed in the literature.</p> <p>Trial registration number</p> <p>NCT00878631</p
- …
