170 research outputs found
Two-dimensional = 1/2 antiferromagnetic insulator unraveled from interlayer exchange coupling in artificial perovskite iridate superlattices
We report an experimental investigation of the two-dimensional = 1/2 antiferromagnetic Mott insulator by varying the interlayer exchange
coupling in [(SrIrO), (SrTiO)] ( = 1, 2 and 3)
superlattices. Although all samples exhibited an insulating ground state with
long-range magnetic order, temperature-dependent resistivity measurements
showed a stronger insulating behavior in the = 2 and = 3 samples than
the = 1 sample which displayed a clear kink at the magnetic transition.
This difference indicates that the blocking effect of the excessive SrTiO
layer enhances the effective electron-electron correlation and strengthens the
Mott phase. The significant reduction of the Neel temperature from 150 K for
= 1 to 40 K for = 2 demonstrates that the long-range order stability in
the former is boosted by a substantial interlayer exchange coupling. Resonant
x-ray magnetic scattering revealed that the interlayer exchange coupling has a
switchable sign, depending on the SrTiO layer number , for maintaining
canting-induced weak ferromagnetism. The nearly unaltered transition
temperature between the = 2 and the = 3 demonstrated that we have
realized a two-dimensional antiferromagnet at finite temperatures with
diminishing interlayer exchange coupling.Comment: 4 figure
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II–VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Neel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets
Magnetic anisotropy in antiferromagnetic hexagonal MnTe
Antiferromagnetic hexagonal MnTe is a promising material for spintronic devices relying on the control of antiferromagnetic domain orientations. Here we report on neutron diffraction, magnetotransport, and magnetometry experiments on semiconducting epitaxial MnTe thin films together with density functional theory (DFT) calculations of the magnetic anisotropies. The easy axes of the magnetic moments within the hexagonal basal plane are determined to be along ⟨1¯100⟩ directions. The spin-flop transition and concomitant repopulation of domains in strong magnetic fields is observed. Using epitaxially induced strain the onset of the spin-flop transition changes from ∼2 to ∼0.5 T for films grown on InP and SrF2 substrates, respectively
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III–V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets
Band structure of CuMnAs probed by optical and photoemission spectroscopy
The tetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confirms recent theoretical claim [Phys. Rev. B 96, 094406 (2017)] that copper atoms occupy lattice positions in the basal plane of the tetragonal unit cell
Symmetry and topology in antiferromagnetic spintronics
Antiferromagnetic spintronics focuses on investigating and using
antiferromagnets as active elements in spintronics structures. Last decade
advances in relativistic spintronics led to the discovery of the staggered,
current-induced field in antiferromagnets. The corresponding N\'{e}el
spin-orbit torque allowed for efficient electrical switching of
antiferromagnetic moments and, in combination with electrical readout, for the
demonstration of experimental antiferromagnetic memory devices. In parallel,
the anomalous Hall effect was predicted and subsequently observed in
antiferromagnets. A new field of spintronics based on antiferromagnets has
emerged. We will focus here on the introduction into the most significant
discoveries which shaped the field together with a more recent spin-off
focusing on combining antiferromagnetic spintronics with topological effects,
such as antiferromagnetic topological semimetals and insulators, and the
interplay of antiferromagnetism, topology, and superconductivity in
heterostructures.Comment: Book chapte
Spin transport and spin torque in antiferromagnetic devices
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices
Thick Does the Trick: Genesis of Ferroelectricity in 2D GeTe-Rich (GeTe)m(Sb2Te3)n Lamellae
The possibility to engineer (GeTe)m(Sb2Te3)n phase-change materials to co-host ferroelectricity is extremely attractive. The combination of these functionalities holds great technological impact, potentially enabling the design of novel multifunctional devices. Here an experimental and theoretical study of epitaxial (GeTe)m(Sb2Te3)n with GeTe-rich composition is presented. These layered films feature a tunable distribution of (GeTe)m(Sb2Te3)1 blocks of different sizes. Breakthrough evidence of ferroelectric displacement in thick (GeTe)m(Sb2Te3)1 lamellae is provided. The density functional theory calculations suggest the formation of a tilted (GeTe)m slab sandwiched in GeTe-rich blocks. That is, the net ferroelectric polarization is confined almost in-plane, representing an unprecedented case between 2D and bulk ferroelectric materials. The ferroelectric behavior is confirmed by piezoresponse force microscopy and electroresistive measurements. The resilience of the quasi van der Waals character of the films, regardless of their composition, is also demonstrated. Hence, the material developed hereby gathers in a unique 2D platform the phase-change and ferroelectric switching properties, paving the way for the conception of innovative device architectures
- …
