1,145 research outputs found

    The Elliptic curves in gauge theory, string theory, and cohomology

    Full text link
    Elliptic curves play a natural and important role in elliptic cohomology. In earlier work with I. Kriz, thes elliptic curves were interpreted physically in two ways: as corresponding to the intersection of M2 and M5 in the context of (the reduction of M-theory to) type IIA and as the elliptic fiber leading to F-theory for type IIB. In this paper we elaborate on the physical setting for various generalized cohomology theories, including elliptic cohomology, and we note that the above two seemingly unrelated descriptions can be unified using Sen's picture of the orientifold limit of F-theory compactification on K3, which unifies the Seiberg-Witten curve with the F-theory curve, and through which we naturally explain the constancy of the modulus that emerges from elliptic cohomology. This also clarifies the orbifolding performed in the previous work and justifies the appearance of the w_4 condition in the elliptic refinement of the mod 2 part of the partition function. We comment on the cohomology theory needed for the case when the modular parameter varies in the base of the elliptic fibration.Comment: 23 pages, typos corrected, minor clarification

    Methods of determining loads and fiber orientations in anisotropic non-crystalline materials using energy flux deviation

    Get PDF
    An ultrasonic wave is applied to an anisotropic sample material in an initial direction and an angle of flux deviation of the ultrasonic wave front is measured from this initial direction. This flux deviation angle is induced by the unknown applied load. The flux shift is determined between this flux deviation angle and a previously determined angle of flux deviation of an ultrasonic wave applied to a similar anisotropic reference material under an initial known load condition. This determined flux shift is then compared to a plurality of flux shifts of a similarly tested, similar anisotropic reference material under a plurality of respective, known load conditions, whereby the load applied to the particular anisotropic sample material is determined. A related method is disclosed for determining the fiber orientation from known loads and a determined flux shift

    Duality symmetry and the form fields of M-theory

    Full text link
    In previous work we derived the topological terms in the M-theory action in terms of certain characters that we defined. In this paper, we propose the extention of these characters to include the dual fields. The unified treatment of the M-theory four-form field strength and its dual leads to several observations. In particular we elaborate on the possibility of a twisted cohomology theory with a twist given by degrees greater than three.Comment: 12 pages, modified material on the differentia

    M-theory and Characteristic Classes

    Full text link
    In this note we show that the Chern-Simons and the one-loop terms in the M-theory action can be written in terms of new characters involving the M-theory four-form and the string classes. This sheds a new light on the topological structure behind M-theory and suggests the construction of a theory of `higher' characteristic classes.Comment: 8 pages. Error in gravitational term fixed; minor corrections; reference and acknowledgement adde

    A mathematical formalism for the Kondo effect in WZW branes

    Full text link
    In this paper, we show how to adapt our rigorous mathematical formalism for closed/open conformal field theory so that it captures the known physical theory of branes in the WZW model. This includes a mathematically precise approach to the Kondo effect, which is an example of evolution of one conformally invariant boundary condition into another through boundary conditions which can break conformal invariance, and a proposed mathematical statement of the Kondo effect conjecture. We also review some of the known physical results on WZW boundary conditions from a mathematical perspective.Comment: Added explanations of the settings and main result

    Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei

    Full text link
    We present self-consistent models of the vertical structure and emergent spectrum of AGN accretion disks. The central object is assumed to be a supermassive Kerr black hole. We demonstrate that NLTE effects and the effects of a self-consistent vertical structure of a disk play a very important role in determining the emergent radiation, and therefore should be taken into account. In particular, NLTE models exhibit a largely diminished H I Lyman discontinuity when compared to LTE models, and the He II discontinuity appears strongly in emission for NLTE models. Consequently, the number of ionizing photons in the He II Lyman continuum predicted by NLTE disk models is by 1 - 2 orders of magnitude higher than that following from the black-body approximation. This prediction has important implications for ionization models of AGN broad line regions, and for models of the intergalactic radiation field and the ionization of helium in the intergalactic medium.Comment: 11 pages; 2 postscript figures; LaTeX, AASPP4 macro; to appear in the Astrophysical Journal (Letters

    Putting theory oriented evaluation into practice

    Get PDF
    Evaluations of gaming simulations and business games as teaching devices are typically end-state driven. This emphasis fails to detect how the simulation being evaluated does or does not bring about its desired consequences. This paper advances the use of a logic model approach which possesses a holistic perspective that aims at including all elements associated with the situation created by a game. The use of the logic model approach is illustrated as applied to Simgame, a board game created for secondary school level business education in six European Union countries

    Renal pericytes: regulators of medullary blood flow

    Get PDF
    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla

    Loop Groups, Kaluza-Klein Reduction and M-Theory

    Full text link
    We show that the data of a principal G-bundle over a principal circle bundle is equivalent to that of a \hat{LG} = U(1) |x LG bundle over the base of the circle bundle. We apply this to the Kaluza-Klein reduction of M-theory to IIA and show that certain generalized characteristic classes of the loop group bundle encode the Bianchi identities of the antisymmetric tensor fields of IIA supergravity. We further show that the low dimensional characteristic classes of the central extension of the loop group encode the Bianchi identities of massive IIA, thereby adding support to the conjectures of hep-th/0203218.Comment: 26 pages, LaTeX, utarticle.cls, v2:clarifications and refs adde
    corecore