417 research outputs found
Holographic storage of multiple coherence gratings in a Bose-Einstein condensate
We demonstrate superradiant conversion between a two-mode collective atomic
state and a single-mode light field in an elongated cloud of Bose-condensed
atoms. Two off-resonant write beams induce superradiant Raman scattering,
producing two independent coherence gratings with a different wave vector in
the cloud. By applying phase-matched read beams after a controllable delay, the
gratings can be selectively converted into the light field also in a
superradiant way. Due to the large cooperativity parameter and the small
velocity width of the condensate, a high conversion efficiency of % and
a long storage time of s were achieved.Comment: 5 pages, 4 figure
Quantum Criticality and Inhomogeneous Magnetic Order in Fe-doped alpha-YbAlB4
The intermediate-valent polymorphs - and -YbAlB exhibit
quantum criticality and other novel properties not usually associated with
intermediate valence. Iron doping induces quantum criticality in
-YbAlB and magnetic order in both compounds. We report results of
muon spin relaxation (SR) experiments in the intermediate-valent alloys
-YbAlFeB, and 0.25. For we find
no evidence for magnetic order down to 25 mK\@. The dynamic muon spin
relaxation rate exhibits a power-law temperature dependence
, , in the temperature range 100 mK--2
K, in disagreement with predictions by theories of antiferromagnetic (AFM) or
valence quantum critical behavior. For , where AFM order develops in
the temperature range 7.5--10 K, where we find coexistence of meso- or
macroscopically segregated paramagnetic and AFM phases, with considerable
disorder in the latter down to 2 K.Comment: 9 pages, 10 figures, to be published in Phys. Rev.
Strong valence fluctuation in the quantum critical heavy fermion superconductor beta-YbAlB4: A hard x-ray photoemission study
Electronic structures of the quantum critical superconductor beta-YbAlB4 and
its polymorph alpha-YbAlB4 are investigated by using bulk-sensitive hard x-ray
photoemission spectroscopy. From the Yb 3d core level spectra, the values of
the Yb valence are estimated to be ~2.73 and ~2.75 for alpha- and beta-YbAlB4,
respectively, thus providing clear evidence for valence fluctuations. The
valence band spectra of these compounds also show Yb2+ peaks at the Fermi
level. These observations establish an unambiguous case of a strong mixed
valence at quantum criticality for the first time among heavy fermion systems,
calling for a novel scheme for a quantum critical model beyond the conventional
Doniach picture in beta-YbAlB4.Comment: 4 pages, 3 figures, revised version accepted for publication in PR
Observation of coherent backscattering of light by cold atoms
Coherent backscattering (CBS) of light waves by a random medium is a
signature of interference effects in multiple scattering. This effect has been
studied in many systems ranging from white paint to biological tissues.
Recently, we have observed CBS from a sample of laser-cooled atoms, a
scattering medium with interesting new properties. In this paper we discuss
various effects, which have to be taken into account for a quantitative study
of coherent backscattering of light by cold atoms.Comment: 25 pages LaTex2e, 17 figures, submitted to J. Opt. B: Quant. Semicl.
Op
Light transport in cold atoms: the fate of coherent backscattering in the weak localization regime
The recent observation of coherent backscattering (CBS) of light by atoms has
emphasized the key role of the velocity spread and of the quantum internal
structure of the atoms. Firstly, using highly resonant scatterers imposes very
low temperatures of the disordered medium in order to keep the full contrast of
the CBS interference. This criterion is usually achieved with standard laser
cooling techniques. Secondly, a non trivial internal atomic structure leads to
a dramatic decrease of the CBS contrast. Experiments with Rubidium atoms (with
a non trivial internal structure) and with Strontium (with the simplest
possible internal structure) show this behaviour and confirm theoretical
calculations
Mach-Zehnder Bragg interferometer for a Bose-Einstein Condensate
We construct a Mach-Zehnder interferometer using Bose-Einstein condensed
rubidium atoms and optical Bragg diffraction. In contrast to interferometers
based on normal diffraction, where only a small percentage of the atoms
contribute to the signal, our Bragg diffraction interferometer uses all the
condensate atoms. The condensate coherence properties and high phase-space
density result in an interference pattern of nearly 100% contrast. In
principle, the enclosed area of the interferometer may be arbitrarily large,
making it an ideal tool that could be used in the detection of vortices, or
possibly even gravitational waves.Comment: 10 pages, 3 figures, Quantum Electronics and Laser Science Conference
1999, Postdeadline papers QPD12-
New high-efficiency source of photon pairs for engineering quantum entanglement
We have constructed an efficient source of photon pairs using a
waveguide-type nonlinear device and performed a two-photon interference
experiment with an unbalanced Michelson interferometer. Parametric
down-converted photons from the nonlinear device are detected by two detectors
located at the output ports of the interferometer. Because the interferometer
is constructed with two optical paths of different length, photons from the
shorter path arrive at the detector earlier than those from the longer path. We
find that the difference of arrival time and the time window of the coincidence
counter are important parameters which determine the boundary between the
classical and quantum regime. When the time window of the coincidence counter
is smaller than the arrival time difference, fringes of high visibility
(80 10%) were observed. This result is only explained by quantum theory
and is clear evidence for quantum entanglement of the interferometer's optical
paths.Comment: 4 pages, 4 figures, IQEC200
Anomalous Coherent Backscattering of Light from Opal Photonic Crystals
We studied coherent backscattering (CBS) of light from opal photonic crystals
in air at different incident inclination angles, wavelengths and along various
[hkl] directions inside the opals. Similar to previously obtained CBS cones
from various random media, we found that when Bragg condition with the incident
light beam is not met then the CBS cones from opals show a triangular line
shape in excellent agreement with light diffusion theory. At Bragg condition,
however, we observed a dramatic broadening of the opal CBS cones that depends
on the incident angle and [hkl] direction. This broadening is explained as due
to the light intensity decay in course of propagation along the Bragg direction
{\em before the first} and {\em after the last} scattering events. We modified
the CBS theory to incorporate the attenuation that results from the photonic
band structure of the medium. Using the modified theory we extract from our CBS
data the light mean free path and Bragg attenuation length at different [hkl].
Our study shows that CBS measurements are a unique experimental technique to
explore photonic crystals with disorder, when other spectroscopical methods
become ambiguous due to disorder-induced broadening.Comment: 10 pages, 5 figure
Realization of Bose-Einstein condensates in lower dimensions
Bose-Einstein condensates of sodium atoms have been prepared in optical and
magnetic traps in which the energy-level spacing in one or two dimensions
exceeds the interaction energy between atoms, realizing condensates of lower
dimensionality. The cross-over into two-dimensional and one-dimensional
condensates was observed by a change in aspect ratio and saturation of the
release energy when the number of trapped atoms was reduced
Optical Confinement of a Bose-Einstein Condensate
Bose-Einstein condensates of sodium atoms have been confined in an optical
dipole trap using a single focused infrared laser beam. This eliminates the
restrictions of magnetic traps for further studies of atom lasers and
Bose-Einstein condensates. More than five million condensed atoms were
transferred into the optical trap. Densities of up to of Bose condensed atoms were obtained, allowing for a measurement of
the three-body decay rate constant for sodium condensates as . At lower densities, the observed 1/e
lifetime was more than 10 sec. Simultaneous confinement of Bose-Einstein
condensates in several hyperfine states was demonstrated.Comment: 5 pages, 4 figure
- …
